ipex-llm/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/qwen.py
Yuwen Hu 381d448ee2
[NPU] Example & Quickstart updates (#12650)
* Remove model with optimize_model=False in NPU verified models tables, and remove related example

* Remove experimental in run optimized model section title

* Unify model table order & example cmd

* Move embedding example to separate folder & update quickstart example link

* Add Quickstart reference in main NPU readme

* Small fix

* Small fix

* Move save/load examples under NPU/HF-Transformers-AutoModels

* Add low-bit and polish arguments for LLM Python examples

* Small fix

* Add low-bit and polish arguments for Multi-Model  examples

* Polish argument for Embedding models

* Polish argument for LLM CPP examples

* Add low-bit and polish argument for Save-Load examples

* Add accuracy tuning tips for examples

* Update NPU qucikstart accuracy tuning with low-bit optimizations

* Add save/load section to qucikstart

* Update CPP example sample output to EN

* Add installation regarding cmake for CPP examples

* Small fix

* Small fix

* Small fix

* Small fix

* Small fix

* Small fix

* Unify max prompt length to 512

* Change recommended low-bit for Qwen2.5-3B-Instruct to asym_int4

* Update based on comments

* Small fix
2025-01-07 13:52:41 +08:00

117 lines
4.6 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import torch
import time
import argparse
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
from transformers import AutoTokenizer, TextStreamer
from transformers.utils import logging
logger = logging.get_logger(__name__)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Predict Tokens using `generate()` API for npu model"
)
parser.add_argument(
"--repo-id-or-model-path",
type=str,
default="Qwen/Qwen2.5-7B-Instruct",
help="The huggingface repo id for the Qwen2 or Qwen2.5 model to be downloaded"
", or the path to the huggingface checkpoint folder.",
)
parser.add_argument('--prompt', type=str, default="AI是什么?",
help='Prompt to infer')
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict.")
parser.add_argument("--max-context-len", type=int, default=1024)
parser.add_argument("--max-prompt-len", type=int, default=512)
parser.add_argument("--quantization-group-size", type=int, default=0)
parser.add_argument('--low-bit', type=str, default="sym_int4",
help='Low bit optimizations that will be applied to the model.')
parser.add_argument("--disable-streaming", action="store_true", default=False)
parser.add_argument("--save-directory", type=str,
required=True,
help="The path of folder to save converted model, "
"If path not exists, lowbit model will be saved there. "
"Else, lowbit model will be loaded.",
)
args = parser.parse_args()
model_path = args.repo_id_or_model_path
if not os.path.exists(args.save_directory):
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
trust_remote_code=True,
attn_implementation="eager",
load_in_low_bit=args.low_bit,
optimize_model=True,
max_context_len=args.max_context_len,
max_prompt_len=args.max_prompt_len,
quantization_group_size=args.quantization_group_size,
save_directory=args.save_directory
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
tokenizer.save_pretrained(args.save_directory)
else:
model = AutoModelForCausalLM.load_low_bit(
args.save_directory,
attn_implementation="eager",
torch_dtype=torch.float16,
optimize_model=True,
max_context_len=args.max_context_len,
max_prompt_len=args.max_prompt_len
)
tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)
if args.disable_streaming:
streamer = None
else:
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
print("-" * 80)
print("done")
messages = [{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": args.prompt}]
text = tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
with torch.inference_mode():
print("finish to load")
for i in range(3):
_input_ids = tokenizer([text], return_tensors="pt").input_ids
print("-" * 20, "Input", "-" * 20)
print("input length:", len(_input_ids[0]))
print(text)
print("-" * 20, "Output", "-" * 20)
st = time.time()
output = model.generate(
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict, streamer=streamer
)
end = time.time()
if args.disable_streaming:
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print(output_str)
print(f"Inference time: {end-st} s")
print("-" * 80)
print("done")
print("success shut down")