* Add --modelscope for more models * minicpm --------- Co-authored-by: ATMxsp01 <shou.xu@intel.com>
		
			
				
	
	
		
			93 lines
		
	
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			93 lines
		
	
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
 | 
						|
from ipex_llm.transformers import AutoModelForCausalLM
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MiniCPM3 model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, 
 | 
						|
                        help='The Hugging Face or ModelScope repo id for the MiniCPM3 model to be downloaded'
 | 
						|
                             ', or the path to the checkpoint folder')
 | 
						|
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                        help='Max tokens to predict')
 | 
						|
    parser.add_argument('--modelscope', action="store_true", default=False, 
 | 
						|
                        help="Use models from modelscope")
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    
 | 
						|
    if args.modelscope:
 | 
						|
        from modelscope import AutoTokenizer
 | 
						|
        model_hub = 'modelscope'
 | 
						|
    else:
 | 
						|
        from transformers import AutoTokenizer
 | 
						|
        model_hub = 'huggingface'
 | 
						|
    
 | 
						|
    model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \
 | 
						|
        ("OpenBMB/MiniCPM3-4B" if args.modelscope else "openbmb/MiniCPM3-4B")
 | 
						|
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
 | 
						|
    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
						|
                                                 load_in_4bit=True,
 | 
						|
                                                 trust_remote_code=True,
 | 
						|
                                                 optimize_model=True,
 | 
						|
                                                 use_cache=True,
 | 
						|
                                                 model_hub=model_hub)
 | 
						|
    
 | 
						|
    model = model.half().to('xpu')
 | 
						|
 | 
						|
    # Load tokenizer
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
						|
                                              trust_remote_code=True)
 | 
						|
    
 | 
						|
    # Generate predicted tokens
 | 
						|
    with torch.inference_mode():
 | 
						|
        # here the prompt formatting refers to: https://huggingface.co/openbmb/MiniCPM3-4B#inference-with-transformers
 | 
						|
        chat = [
 | 
						|
            { "role": "user", "content": args.prompt },
 | 
						|
        ]
 | 
						|
 | 
						|
        prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
 | 
						|
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
						|
 | 
						|
        # ipex_llm model needs a warmup, then inference time can be accurate
 | 
						|
        output = model.generate(input_ids,
 | 
						|
                                do_sample=False,
 | 
						|
                                max_new_tokens=args.n_predict)
 | 
						|
        # start inference
 | 
						|
        st = time.time()
 | 
						|
 | 
						|
        output = model.generate(input_ids,
 | 
						|
                                do_sample=False,
 | 
						|
                                max_new_tokens=args.n_predict)
 | 
						|
        torch.xpu.synchronize()
 | 
						|
        end = time.time()
 | 
						|
        output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
						|
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        print('-'*20, 'Prompt', '-'*20)
 | 
						|
        print(prompt)
 | 
						|
        print('-'*20, 'Output', '-'*20)
 | 
						|
        print(output_str)
 |