ipex-llm/python/llm/example/NPU/HF-Transformers-AutoModels/Save-Load/generate.py
Yuwen Hu 381d448ee2
[NPU] Example & Quickstart updates (#12650)
* Remove model with optimize_model=False in NPU verified models tables, and remove related example

* Remove experimental in run optimized model section title

* Unify model table order & example cmd

* Move embedding example to separate folder & update quickstart example link

* Add Quickstart reference in main NPU readme

* Small fix

* Small fix

* Move save/load examples under NPU/HF-Transformers-AutoModels

* Add low-bit and polish arguments for LLM Python examples

* Small fix

* Add low-bit and polish arguments for Multi-Model  examples

* Polish argument for Embedding models

* Polish argument for LLM CPP examples

* Add low-bit and polish argument for Save-Load examples

* Add accuracy tuning tips for examples

* Update NPU qucikstart accuracy tuning with low-bit optimizations

* Add save/load section to qucikstart

* Update CPP example sample output to EN

* Add installation regarding cmake for CPP examples

* Small fix

* Small fix

* Small fix

* Small fix

* Small fix

* Small fix

* Unify max prompt length to 512

* Change recommended low-bit for Qwen2.5-3B-Instruct to asym_int4

* Update based on comments

* Small fix
2025-01-07 13:52:41 +08:00

106 lines
4.4 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
from transformers import AutoTokenizer
from ipex_llm.utils.common.log4Error import invalidInputError
# you could tune the prompt based on your own model,
LLAMA2_PROMPT_FORMAT = """<s> [INST] <<SYS>>
<</SYS>>
{prompt} [/INST]
"""
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Example of saving and loading the optimized model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--save-directory', type=str, default=None,
help='The path to save the low-bit model.')
parser.add_argument('--load-directory', type=str, default=None,
help='The path to load the low-bit model.')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument("--max-context-len", type=int, default=1024)
parser.add_argument("--max-prompt-len", type=int, default=512)
parser.add_argument('--low-bit', type=str, default="sym_int4",
help='Low bit optimizations that will be applied to the model.')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
save_directory = args.save_directory
load_directory = args.load_directory
if save_directory:
# first time to load and save
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
trust_remote_code=True,
attn_implementation="eager",
load_in_low_bit=args.low_bit,
optimize_model=True,
max_context_len=args.max_context_len,
max_prompt_len=args.max_prompt_len,
save_directory=save_directory
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
tokenizer.save_pretrained(save_directory)
print(f"Finish to load model from {model_path} and save to {save_directory}")
elif load_directory:
# load low-bit model
model = AutoModelForCausalLM.load_low_bit(
load_directory,
attn_implementation="eager",
torch_dtype=torch.float16,
optimize_model=True,
max_context_len=args.max_context_len,
max_prompt_len=args.max_prompt_len
)
tokenizer = AutoTokenizer.from_pretrained(load_directory, trust_remote_code=True)
print(f"Finish to load model from {load_directory}")
else:
invalidInputError(False,
"Both `--save-directory` and `--load-directory` are None, please provide one of this.")
# Generate predicted tokens
with torch.inference_mode():
for i in range(3):
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
st = time.time()
output = model.generate(
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
)
end = time.time()
print(f"Inference time: {end-st} s")
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
print("-" * 20, "Input", "-" * 20)
print(input_str)
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print("-" * 20, "Output", "-" * 20)
print(output_str)