ipex-llm/python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6/chat.py
Xu, Shuo b0338c5529
Add --modelscope option for glm-v4 MiniCPM-V-2_6 glm-edge and internvl2 (#12583)
* Add --modelscope option for glm-v4 and MiniCPM-V-2_6

* glm-edge

* minicpm-v-2_6:don't use model_hub=modelscope when use lowbit; internvl2

---------

Co-authored-by: ATMxsp01 <shou.xu@intel.com>
2024-12-20 13:54:17 +08:00

148 lines
5.8 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import time
import argparse
import requests
import torch
from PIL import Image
from ipex_llm.transformers import AutoModel
from transformers import AutoProcessor
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for openbmb/MiniCPM-V-2_6 model')
parser.add_argument('--repo-id-or-model-path', type=str,
help='The Hugging Face or ModelScope repo id for the MiniCPM-V-2_6 model to be downloaded'
', or the path to the checkpoint folder')
parser.add_argument("--lowbit-path", type=str,
default="",
help="The path to the saved model folder with IPEX-LLM low-bit optimization. "
"Leave it blank if you want to load from the original model. "
"If the path does not exist, model with low-bit optimization will be saved there."
"Otherwise, model with low-bit optimization will be loaded from the path.",
)
parser.add_argument('--image-url-or-path', type=str,
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="What is in the image?",
help='Prompt to infer')
parser.add_argument('--stream', action='store_true',
help='Whether to chat in streaming mode')
parser.add_argument('--modelscope', action="store_true", default=False,
help="Use models from modelscope")
args = parser.parse_args()
if args.modelscope:
from modelscope import AutoTokenizer
model_hub = 'modelscope'
else:
from transformers import AutoTokenizer
model_hub = 'huggingface'
model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \
("OpenBMB/MiniCPM-V-2_6" if args.modelscope else "openbmb/MiniCPM-V-2_6")
image_path = args.image_url_or_path
lowbit_path = args.lowbit_path
if not lowbit_path or not os.path.exists(lowbit_path):
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModel.from_pretrained(model_path,
load_in_low_bit="sym_int4",
optimize_model=True,
trust_remote_code=True,
use_cache=True,
modules_to_not_convert=["vpm", "resampler"],
model_hub=model_hub)
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
else:
model = AutoModel.load_low_bit(lowbit_path,
optimize_model=True,
trust_remote_code=True,
use_cache=True,
modules_to_not_convert=["vpm", "resampler"])
tokenizer = AutoTokenizer.from_pretrained(lowbit_path,
trust_remote_code=True)
model.eval()
if lowbit_path and not os.path.exists(lowbit_path):
processor = AutoProcessor.from_pretrained(model_path,
trust_remote_code=True)
model.save_low_bit(lowbit_path)
tokenizer.save_pretrained(lowbit_path)
processor.save_pretrained(lowbit_path)
model = model.half().to('xpu')
query = args.prompt
if os.path.exists(image_path):
image = Image.open(image_path).convert('RGB')
else:
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
# Generate predicted tokens
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/README.md
msgs = [{'role': 'user', 'content': [image, args.prompt]}]
# ipex_llm model needs a warmup, then inference time can be accurate
model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer,
)
if args.stream:
res = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer,
stream=True
)
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Stream Chat Output', '-'*20)
for new_text in res:
print(new_text, flush=True, end='')
else:
st = time.time()
res = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer,
)
torch.xpu.synchronize()
end = time.time()
print(f'Inference time: {end-st} s')
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Chat Output', '-'*20)
print(res)