* model to fp16 & 2_6 reorganize * revisions * revisions * half * deleted transformer version requirements * deleted transformer version requirements --------- Co-authored-by: ivy-lv11 <zhicunlv@gmail.com>
		
			
				
	
	
		
			175 lines
		
	
	
	
		
			6.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			175 lines
		
	
	
	
		
			6.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
from typing import List, Tuple, Optional, Union
 | 
						|
import math
 | 
						|
import timm
 | 
						|
import torch
 | 
						|
import torch.nn.functional as F
 | 
						|
 | 
						|
# patched: `timm` has limited support for XPU backend, so we need to use CPU as a workaround
 | 
						|
def resample_abs_pos_embed(
 | 
						|
        posemb: torch.Tensor,
 | 
						|
        new_size: List[int],
 | 
						|
        old_size: Optional[List[int]] = None,
 | 
						|
        num_prefix_tokens: int = 1,
 | 
						|
        interpolation: str = 'bicubic',
 | 
						|
        antialias: bool = True,
 | 
						|
        verbose: bool = False,
 | 
						|
):
 | 
						|
    # sort out sizes, assume square if old size not provided
 | 
						|
    num_pos_tokens = posemb.shape[1]
 | 
						|
    num_new_tokens = new_size[0] * new_size[1] + num_prefix_tokens
 | 
						|
    if num_new_tokens == num_pos_tokens and new_size[0] == new_size[1]:
 | 
						|
        return posemb
 | 
						|
 | 
						|
    if old_size is None:
 | 
						|
        hw = int(math.sqrt(num_pos_tokens - num_prefix_tokens))
 | 
						|
        old_size = hw, hw
 | 
						|
 | 
						|
    if num_prefix_tokens:
 | 
						|
        posemb_prefix, posemb = posemb[:, :num_prefix_tokens], posemb[:, num_prefix_tokens:]
 | 
						|
    else:
 | 
						|
        posemb_prefix, posemb = None, posemb
 | 
						|
 | 
						|
    # do the interpolation
 | 
						|
    embed_dim = posemb.shape[-1]
 | 
						|
    orig_dtype = posemb.dtype
 | 
						|
    posemb = posemb.float()  # interpolate needs float32
 | 
						|
    posemb = posemb.reshape(1, old_size[0], old_size[1], -1).permute(0, 3, 1, 2)
 | 
						|
    #posemb = F.interpolate(posemb, size=new_size, mode=interpolation, antialias=antialias)
 | 
						|
    posemb = F.interpolate(posemb.to("cpu"), size=new_size, mode=interpolation, antialias=antialias).to(posemb.device)
 | 
						|
    posemb = posemb.permute(0, 2, 3, 1).reshape(1, -1, embed_dim)
 | 
						|
    posemb = posemb.to(orig_dtype)
 | 
						|
 | 
						|
    # add back extra (class, etc) prefix tokens
 | 
						|
    if posemb_prefix is not None:
 | 
						|
        posemb = torch.cat([posemb_prefix, posemb], dim=1)
 | 
						|
 | 
						|
    if not torch.jit.is_scripting() and verbose:
 | 
						|
        _logger.info(f'Resized position embedding: {old_size} to {new_size}.')
 | 
						|
 | 
						|
    return posemb
 | 
						|
 | 
						|
 | 
						|
def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
 | 
						|
    if self.pos_embed is None:
 | 
						|
        return x.view(x.shape[0], -1, x.shape[-1])
 | 
						|
 | 
						|
    if self.dynamic_img_size:
 | 
						|
        B, H, W, C = x.shape
 | 
						|
        pos_embed = resample_abs_pos_embed(
 | 
						|
            self.pos_embed,
 | 
						|
            (H, W),
 | 
						|
            num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens,
 | 
						|
        )
 | 
						|
        x = x.view(B, -1, C)
 | 
						|
    else:
 | 
						|
        pos_embed = self.pos_embed
 | 
						|
 | 
						|
    to_cat = []
 | 
						|
    if self.cls_token is not None:
 | 
						|
        to_cat.append(self.cls_token.expand(x.shape[0], -1, -1))
 | 
						|
    if self.reg_token is not None:
 | 
						|
        to_cat.append(self.reg_token.expand(x.shape[0], -1, -1))
 | 
						|
 | 
						|
    if self.no_embed_class:
 | 
						|
        # deit-3, updated JAX (big vision)
 | 
						|
        # position embedding does not overlap with class token, add then concat
 | 
						|
        x = x + pos_embed
 | 
						|
        if to_cat:
 | 
						|
            x = torch.cat(to_cat + [x], dim=1)
 | 
						|
    else:
 | 
						|
        # original timm, JAX, and deit vit impl
 | 
						|
        # pos_embed has entry for class token, concat then add
 | 
						|
        if to_cat:
 | 
						|
            x = torch.cat(to_cat + [x], dim=1)
 | 
						|
        x = x + pos_embed
 | 
						|
 | 
						|
    return self.pos_drop(x)
 | 
						|
 | 
						|
 | 
						|
setattr(timm.models.VisionTransformer, "_pos_embed", _pos_embed)
 | 
						|
 | 
						|
 | 
						|
import os
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
import requests
 | 
						|
from PIL import Image
 | 
						|
from ipex_llm.transformers import AutoModel
 | 
						|
from transformers import AutoTokenizer
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for openbmb/MiniCPM-V-2_6 model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2_6",
 | 
						|
                        help='The huggingface repo id for the openbmb/MiniCPM-V-2_6 model to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--image-url-or-path', type=str,
 | 
						|
                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
 | 
						|
                        help='The URL or path to the image to infer')
 | 
						|
    parser.add_argument('--prompt', type=str, default="What is in the image?",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                        help='Max tokens to predict')
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
    image_path = args.image_url_or_path
 | 
						|
    
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
 | 
						|
    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
						|
    model = AutoModel.from_pretrained(model_path, 
 | 
						|
                                      load_in_low_bit="sym_int4",
 | 
						|
                                      optimize_model=True,
 | 
						|
                                      trust_remote_code=True,
 | 
						|
                                      use_cache=True)
 | 
						|
    model = model.half().to(device='xpu')
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
						|
                                              trust_remote_code=True)
 | 
						|
    model.eval()
 | 
						|
 | 
						|
    query = args.prompt
 | 
						|
    if os.path.exists(image_path):
 | 
						|
       image = Image.open(image_path).convert('RGB')
 | 
						|
    else:
 | 
						|
       image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
 | 
						|
 | 
						|
    # Generate predicted tokens
 | 
						|
    # here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/README.md
 | 
						|
    msgs = [{'role': 'user', 'content': [image, args.prompt]}]
 | 
						|
    st = time.time()
 | 
						|
    res = model.chat(
 | 
						|
     image=None,
 | 
						|
     msgs=msgs,
 | 
						|
     context=None,
 | 
						|
     tokenizer=tokenizer,
 | 
						|
     sampling=False,
 | 
						|
     temperature=0.7
 | 
						|
    )
 | 
						|
    end = time.time()
 | 
						|
    print(f'Inference time: {end-st} s')
 | 
						|
    print('-'*20, 'Input', '-'*20)
 | 
						|
    print(image_path)
 | 
						|
    print('-'*20, 'Prompt', '-'*20)
 | 
						|
    print(args.prompt)
 | 
						|
    output_str = res
 | 
						|
    print('-'*20, 'Output', '-'*20)
 | 
						|
    print(output_str)
 |