* Add qwen2-vl example * complete generate.py & readme * improve lint style * update 1-6 * update main readme * Format and other small fixes --------- Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
		
			
				
	
	
		
			126 lines
		
	
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			126 lines
		
	
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
import numpy as np
 | 
						|
 | 
						|
from ipex_llm.transformers import Qwen2VLForConditionalGeneration
 | 
						|
from qwen_vl_utils import process_vision_info
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Qwen2-VL model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2-VL-7B-Instruct",
 | 
						|
                        help='The huggingface repo id for the Qwen2-VL model to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--prompt', type=str, default="图片里有什么?",
 | 
						|
                        help='Prompt to infer') 
 | 
						|
    parser.add_argument('--image-url-or-path', type=str,
 | 
						|
                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg' ,
 | 
						|
                        help='The URL or path to the image to infer')
 | 
						|
    
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                        help='Max tokens to predict')
 | 
						|
    parser.add_argument('--modelscope', action="store_true", default=False, 
 | 
						|
                        help="Use models from modelscope")
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    if args.modelscope:
 | 
						|
        from modelscope import AutoProcessor
 | 
						|
        model_hub = 'modelscope'
 | 
						|
    else:
 | 
						|
        from transformers import AutoProcessor
 | 
						|
        model_hub = 'huggingface'
 | 
						|
        
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
 | 
						|
    model = Qwen2VLForConditionalGeneration.from_pretrained(model_path,
 | 
						|
                                                            load_in_4bit=True,
 | 
						|
                                                            optimize_model=True,
 | 
						|
                                                            trust_remote_code=True,
 | 
						|
                                                            modules_to_not_convert=["vision"],
 | 
						|
                                                            use_cache=True,
 | 
						|
                                                            model_hub=model_hub)
 | 
						|
 | 
						|
    # Use .float() for better output, and use .half() for better speed
 | 
						|
    model = model.half().to("xpu")
 | 
						|
 | 
						|
    # The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct#quickstart
 | 
						|
 | 
						|
    # The default range for the number of visual tokens per image in the model is 4-16384.
 | 
						|
    # You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280,
 | 
						|
    # to balance speed and memory usage.
 | 
						|
    min_pixels = 256*28*28
 | 
						|
    max_pixels = 1280*28*28
 | 
						|
    processor = AutoProcessor.from_pretrained(model_path, min_pixels=min_pixels, max_pixels=max_pixels)
 | 
						|
 | 
						|
    prompt = args.prompt
 | 
						|
    image_path = args.image_url_or_path
 | 
						|
 | 
						|
    with torch.inference_mode():
 | 
						|
        messages = [
 | 
						|
            {
 | 
						|
                "role": "user",
 | 
						|
                "content": [
 | 
						|
                    {
 | 
						|
                        "type": "image",
 | 
						|
                        "image": image_path,
 | 
						|
                    },
 | 
						|
                    {"type": "text", "text": prompt},
 | 
						|
                ],
 | 
						|
            }
 | 
						|
        ]
 | 
						|
        text = processor.apply_chat_template(
 | 
						|
            messages, tokenize=False, add_generation_prompt=True
 | 
						|
        )
 | 
						|
        image_inputs, video_inputs = process_vision_info(messages)
 | 
						|
        inputs = processor(
 | 
						|
            text=[text],
 | 
						|
            images=image_inputs,
 | 
						|
            videos=video_inputs,
 | 
						|
            padding=True,
 | 
						|
            return_tensors="pt",
 | 
						|
        )
 | 
						|
        inputs = inputs.to('xpu')
 | 
						|
 | 
						|
        # ipex_llm model needs a warmup, then inference time can be accurate
 | 
						|
        generated_ids = model.generate(
 | 
						|
            **inputs,
 | 
						|
            max_new_tokens=args.n_predict
 | 
						|
        )
 | 
						|
 | 
						|
        st = time.time()
 | 
						|
        generated_ids = model.generate(
 | 
						|
            **inputs,
 | 
						|
            max_new_tokens=args.n_predict
 | 
						|
        )
 | 
						|
        torch.xpu.synchronize()
 | 
						|
        end = time.time()
 | 
						|
        generated_ids = generated_ids.cpu()
 | 
						|
        generated_ids = [
 | 
						|
            output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
 | 
						|
        ]
 | 
						|
 | 
						|
        response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        print('-'*20, 'Input Image', '-'*20)
 | 
						|
        print(image_path)
 | 
						|
        print('-'*20, 'Prompt', '-'*20)
 | 
						|
        print(prompt)
 | 
						|
        print('-'*20, 'Output', '-'*20)
 | 
						|
        print(response)
 |