ipex-llm/python/llm/dev/benchmark/all-in-one/config.yaml
yb-peng 2685c41318
Modify all-in-one benchmark (#10726)
* Update 8192 prompt in all-in-one

* Add cpu_embedding param for linux api

* Update run.py

* Update README.md
2024-04-11 13:38:50 +08:00

36 lines
1.5 KiB
YAML

repo_id:
# - 'THUDM/chatglm2-6b'
- 'meta-llama/Llama-2-7b-chat-hf'
# - 'liuhaotian/llava-v1.5-7b' # requires a LLAVA_REPO_DIR env variables pointing to the llava dir; added only for gpu win related test_api now
local_model_hub: 'path to your local model hub'
warm_up: 1
num_trials: 3
num_beams: 1 # default to greedy search
low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
batch_size: 1 # default to 1
in_out_pairs:
- '32-32'
- '1024-128'
test_api:
- "transformer_int4_gpu" # on Intel GPU
# - "transformer_int4_fp16_gpu" # on Intel GPU, use fp16 for non-linear layer
# - "ipex_fp16_gpu" # on Intel GPU
# - "bigdl_fp16_gpu" # on Intel GPU
# - "optimize_model_gpu" # on Intel GPU
# - "transformer_int4_gpu_win" # on Intel GPU for Windows
# - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, use fp16 for non-linear layer
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows using load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
# - "deepspeed_optimize_model_gpu" # deepspeed autotp on Intel GPU
# - "speculative_gpu"
# - "transformer_int4"
# - "native_int4"
# - "optimize_model"
# - "pytorch_autocast_bf16"
# - "transformer_autocast_bf16"
# - "bigdl_ipex_bf16"
# - "bigdl_ipex_int4"
# - "bigdl_ipex_int8"
# - "speculative_cpu"
# - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
cpu_embedding: False # whether put embedding to CPU
streaming: False # whether output in streaming way (only avaiable now for gpu win related test_api)