* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm
124 lines
3.9 KiB
Python
124 lines
3.9 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
#
|
|
# This file is adapted from
|
|
# https://github.com/Dao-AILab/flash-attention/blob/main/tests/layers/test_rotary.py
|
|
#
|
|
# Copyright (c) 2023, Tri Dao.
|
|
#
|
|
|
|
import os
|
|
import pytest
|
|
import torch
|
|
import intel_extension_for_pytorch as ipex
|
|
import torch.nn.functional as F
|
|
from einops import rearrange
|
|
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding
|
|
from transformers.models.llama.modeling_llama import (
|
|
apply_rotary_pos_emb as apply_rotary_pos_emb_llama,
|
|
)
|
|
from ipex_llm.transformers.layers.rope_embedding import apply_fast_rope_embedding
|
|
|
|
device = os.environ['DEVICE']
|
|
print(f'Running on {device}')
|
|
if 'xpu' not in device:
|
|
print(f"The layer.fast_rope test should running on xpu")
|
|
|
|
# llama-style rotary embedding
|
|
@pytest.mark.parametrize("seqlen_offset", [0, 711])
|
|
@pytest.mark.parametrize("rotary_emb_fraction", [0.5, 1.0])
|
|
def test_rotary(rotary_emb_fraction, seqlen_offset):
|
|
device = "xpu"
|
|
dtype = torch.float16
|
|
rtol, atol = (1e-3, 5e-3)
|
|
# set seed
|
|
torch.random.manual_seed(0)
|
|
batch_size = 8
|
|
seqlen_total = 2048
|
|
seqlen = seqlen_total - seqlen_offset
|
|
seqlen_offset = torch.tensor([[seqlen_offset]], device=device)
|
|
nheads = 32
|
|
headdim = 128
|
|
rotary_dim = int(headdim * rotary_emb_fraction)
|
|
qkv = torch.randn(
|
|
batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype,
|
|
requires_grad=True
|
|
)
|
|
rotary_llama = LlamaRotaryEmbedding(rotary_dim, seqlen_total, device=device)
|
|
# Doesn't matter what tensor we pass in, rotary_llama only uses the device
|
|
# of the tensor
|
|
cos_llama, sin_llama = rotary_llama(qkv, seq_len=seqlen_total)
|
|
cos_llama, sin_llama = cos_llama.to(dtype=dtype), sin_llama.to(dtype=dtype)
|
|
q_pt = (
|
|
rearrange(qkv[:, :, 0, :, :rotary_dim], "b s h d -> b h s d")
|
|
.detach()
|
|
.clone()
|
|
.requires_grad_(True)
|
|
)
|
|
k_pt = (
|
|
rearrange(qkv[:, :, 1, :, :rotary_dim], "b s h d -> b h s d")
|
|
.detach()
|
|
.clone()
|
|
.requires_grad_(True)
|
|
)
|
|
q_pt_fast = (
|
|
rearrange(qkv[:, :, 0, :, :rotary_dim], "b s h d -> b h s d")
|
|
.detach()
|
|
.clone()
|
|
.requires_grad_(True)
|
|
)
|
|
k_pt_fast = (
|
|
rearrange(qkv[:, :, 1, :, :rotary_dim], "b s h d -> b h s d")
|
|
.detach()
|
|
.clone()
|
|
.requires_grad_(True)
|
|
)
|
|
q_llama, k_llama = apply_rotary_pos_emb_llama(q_pt, k_pt, cos_llama,
|
|
sin_llama, position_ids=seqlen_offset)
|
|
q_fast, k_fast = apply_fast_rope_embedding(q_pt_fast, k_pt_fast,
|
|
position_ids=seqlen_offset,
|
|
model_family="llama")
|
|
assert torch.allclose(
|
|
rearrange(q_llama, "b h s d -> b s h d"),
|
|
rearrange(q_fast, "b h s d -> b s h d"), rtol=rtol, atol=atol
|
|
)
|
|
assert torch.allclose(
|
|
rearrange(k_llama, "b h s d -> b s h d"),
|
|
rearrange(k_fast, "b h s d -> b s h d"), rtol=rtol, atol=atol
|
|
)
|
|
|
|
g = torch.randn_like(q_fast)
|
|
q_fast.backward(g)
|
|
k_fast.backward(g)
|
|
q_llama.backward(g)
|
|
k_llama.backward(g)
|
|
|
|
assert torch.allclose(
|
|
q_pt.grad,
|
|
q_pt_fast.grad,
|
|
rtol=rtol,
|
|
atol=atol,
|
|
)
|
|
|
|
assert torch.allclose(
|
|
k_pt.grad,
|
|
k_pt_fast.grad,
|
|
rtol=rtol,
|
|
atol=atol,
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main([__file__])
|