* feat:add gptq for ppl * fix: add an empty line * fix: add an empty line * fix: remove an empty line * Resolve comments * Resolve comments * Resolve comments
123 lines
4.9 KiB
Python
123 lines
4.9 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# This file is adapted from
|
|
# https://huggingface.co/docs/transformers/en/perplexity
|
|
#
|
|
|
|
import argparse
|
|
import torch
|
|
from tqdm import tqdm
|
|
from datasets import load_dataset
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--model_path", required=True, type=str)
|
|
parser.add_argument("--dataset", type=str, default=None)
|
|
parser.add_argument("--data_path", type=str, default=None)
|
|
parser.add_argument("--chunk_size", type=int, default=512)
|
|
parser.add_argument("--stride", type=int, default=0)
|
|
parser.add_argument("--device", type=str, default="xpu")
|
|
parser.add_argument("--precision", type=str, default="sym_int4")
|
|
parser.add_argument("--use-cache", action="store_true")
|
|
parser.add_argument("--max_length", type=int, default=None)
|
|
parser.add_argument("--mixed_precision", action="store_true")
|
|
args = parser.parse_args()
|
|
|
|
if args.precision == "fp16": # ipex fp16
|
|
from transformers import AutoModelForCausalLM
|
|
model = AutoModelForCausalLM.from_pretrained(args.model_path,
|
|
use_cache=args.use_cache,
|
|
trust_remote_code=True)
|
|
model = model.half()
|
|
elif 'gptq' in args.model_path.lower(): # ipex-llm gptq
|
|
from ipex_llm.transformers import AutoModelForCausalLM
|
|
model = AutoModelForCausalLM.from_pretrained(args.model_path,
|
|
load_in_4bit=True,
|
|
torch_dtype=torch.float,
|
|
use_cache=args.use_cache,
|
|
trust_remote_code=True)
|
|
else: # ipex-llm
|
|
from ipex_llm.transformers import AutoModelForCausalLM
|
|
model = AutoModelForCausalLM.from_pretrained(args.model_path,
|
|
load_in_low_bit=args.precision,
|
|
use_cache=args.use_cache,
|
|
trust_remote_code=True,
|
|
mixed_precision=args.mixed_precision)
|
|
model = model.half()
|
|
model = model.to(args.device)
|
|
model = model.eval()
|
|
|
|
from transformers import AutoTokenizer
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
|
|
|
|
if args.dataset:
|
|
def parse_kwargs(kwstr):
|
|
kvpair = [item.split('=') for item in kwstr.split(',') if item != ""]
|
|
return {k:v for k, v in kvpair}
|
|
test = load_dataset(**parse_kwargs(args.dataset), split="test")["text"]
|
|
encodings = tokenizer("\n\n".join(test), return_tensors="pt")
|
|
elif args.data_path:
|
|
with open(args.data_path, "rb") as f:
|
|
data = f.read()
|
|
encodings = tokenizer(data.decode("utf-8").strip("\n"), return_tensors="pt")
|
|
else:
|
|
from ipex_llm.utils.common import invalidInputError
|
|
raise invalidInputError(False, "Must specify either dataset or datapath.")
|
|
|
|
if not args.max_length:
|
|
try:
|
|
max_length = model.config.max_position_embeddings
|
|
except:
|
|
max_length = model.config.seq_length # max_length in config of chatglm is 'seq_length'
|
|
else:
|
|
max_length = args.max_length
|
|
stride = args.chunk_size if args.stride <= 0 else args.stride
|
|
seq_len = encodings.input_ids.size(1)
|
|
num_chunks = seq_len // stride
|
|
|
|
nlls = []
|
|
prev_end_loc = 0
|
|
for i in tqdm(range(num_chunks)):
|
|
begin_loc = i * stride
|
|
if args.stride > 0:
|
|
end_loc = min(begin_loc + max_length, seq_len)
|
|
trg_len = end_loc - prev_end_loc # may be different from stride on last loop
|
|
else:
|
|
end_loc = begin_loc + stride
|
|
trg_len = -stride//2
|
|
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(args.device)
|
|
if args.stride == 0: input_ids[:, 0] = tokenizer.bos_token_id
|
|
target_ids = input_ids.clone()
|
|
target_ids[:, :-trg_len] = -100
|
|
|
|
with torch.no_grad():
|
|
outputs = model(input_ids, labels=target_ids)
|
|
|
|
# loss is calculated using CrossEntropyLoss which averages over valid labels
|
|
# N.B. the model only calculates loss over trg_len - 1 labels, because it internally shifts the labels
|
|
# to the left by 1.
|
|
neg_log_likelihood = outputs.loss
|
|
|
|
nlls.append(neg_log_likelihood)
|
|
if "xpu" in args.device:
|
|
torch.xpu.empty_cache()
|
|
|
|
prev_end_loc = end_loc
|
|
if end_loc == seq_len:
|
|
break
|
|
|
|
ppl = torch.exp(torch.stack(nlls).mean())
|
|
print("Final ppl estimate: {}".format(ppl.item()))
|