* update unit test * update * update * update * update * update * fix gpu attention test * update * update * update * update * update * update * update example test * replace replit code * update * update * update * update * set safe_serialization false * perf test * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * delete * update * update * update * update * update * update * revert * update
266 lines
12 KiB
Python
266 lines
12 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import torch
|
|
import os
|
|
import json
|
|
from .transformers import ggml_convert_low_bit
|
|
from torch.nn.modules import Module
|
|
from torch.nn.modules.module import _IncompatibleKeys
|
|
from accelerate import init_empty_weights
|
|
from accelerate.utils import set_module_tensor_to_device
|
|
from ipex_llm.ggml.quantize import ggml_tensor_qtype
|
|
from ipex_llm.utils.common import invalidInputError
|
|
from ipex_llm.transformers.utils import extract_local_archive_file, get_local_shard_files
|
|
import transformers
|
|
import warnings
|
|
from transformers import PreTrainedModel
|
|
from .utils.common import MuteHFLogger
|
|
from .utils.lazy_load_torch import LazyLoadTensors
|
|
from contextlib import ExitStack, contextmanager
|
|
|
|
|
|
# Simulate the Hugging Face format
|
|
PYTORCH_MODEL_NAME = "pytorch_model.bin"
|
|
CONFIG_NAME = "bigdl_config.json"
|
|
|
|
|
|
def _save_low_bit(self, save_dir, *args, **kwargs):
|
|
invalidInputError(self._bigdl_config.get("bigdl_transformers_low_bit", False),
|
|
f"Detected this model is not a low-bit model, please use from_pretrained's"
|
|
f" load_in_4bit or load_in_low_bit parameter to load a 4-bit model first.")
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
model_path = os.path.join(save_dir, PYTORCH_MODEL_NAME)
|
|
if isinstance(self, PreTrainedModel):
|
|
# We borrowed this method to adapt to Transformer model cases
|
|
# as much as possible, and later we may merge these two situations
|
|
kwargs['safe_serialization'] = False
|
|
self.save_pretrained(save_dir, *args, **kwargs)
|
|
else:
|
|
# TODO: For the lowbit model still larger than 8GB,
|
|
# save it into shards.
|
|
torch.save(self.state_dict(), model_path, *args, **kwargs)
|
|
with open(os.path.join(save_dir, CONFIG_NAME), "w") as json_file:
|
|
json.dump(self._bigdl_config, json_file)
|
|
|
|
|
|
# Under `init_empty_weights()`, we need to disable all actions
|
|
# that may lead to any parameter allocation", otherwise may need to error:
|
|
# NotImplementedError: Cannot copy out of meta tensor; no data!
|
|
class DisableTorchAllocTensor():
|
|
def __init__(self) -> None:
|
|
self._old_torch_load_state_dict = Module.load_state_dict
|
|
self._old_torch_to_device = Module.to
|
|
self._old_torch_load_from_state_dict = Module._load_from_state_dict
|
|
# Chatglm2 init weights manually,
|
|
# and `skip_init` init on `cpu` by default
|
|
self._old_skip_init = torch.nn.utils.skip_init
|
|
|
|
def __enter__(self):
|
|
Module.load_state_dict = lambda *args, **kwargs: _IncompatibleKeys([], [])
|
|
Module._load_from_state_dict = lambda *args, **kwargs: None
|
|
Module.to = lambda self, *args, **kwargs: self
|
|
|
|
def skip_init_on_meta(module_cls, *args, **kwargs):
|
|
kwargs['device'] = 'meta'
|
|
return self._old_skip_init(module_cls, *args, **kwargs)
|
|
torch.nn.utils.skip_init = skip_init_on_meta
|
|
|
|
def __exit__(self, exc_type, exc_value, traceback):
|
|
Module.load_state_dict = self._old_torch_load_state_dict
|
|
Module._load_from_state_dict = self._old_torch_load_from_state_dict
|
|
Module.to = self._old_torch_to_device
|
|
torch.nn.utils.skip_init = self._old_skip_init
|
|
|
|
|
|
class ContextManagers:
|
|
"""
|
|
Wrapper for `contextlib.ExitStack` which enters a collection of context managers.
|
|
Adaptation of `ContextManagers` in the `fastcore` library.
|
|
"""
|
|
|
|
def __init__(self, context_managers):
|
|
self.context_managers = context_managers
|
|
self.stack = ExitStack()
|
|
|
|
def __enter__(self):
|
|
for context_manager in self.context_managers:
|
|
self.stack.enter_context(context_manager)
|
|
|
|
def __exit__(self, *args, **kwargs):
|
|
self.stack.__exit__(*args, **kwargs)
|
|
|
|
|
|
def low_bit_sanity_check(model_path):
|
|
invalidInputError(os.path.isdir(model_path),
|
|
"model_path should be a valid directory path.")
|
|
invalidInputError(os.path.isfile(os.path.join(model_path, CONFIG_NAME)),
|
|
"bigdl_config.json should be under your model directory,"
|
|
"please check your input path.")
|
|
with open(os.path.join(model_path, CONFIG_NAME), 'r') as f:
|
|
_config = json.load(f)
|
|
|
|
low_bit = _config.get("bigdl_transformers_low_bit", None)
|
|
invalidInputError(low_bit,
|
|
"Detect this model is not a low-bit model, Please use `optimize_model`"
|
|
" with low_bit to get a low-bit model , and "
|
|
" serialize the model using save_low_bit first.")
|
|
return low_bit
|
|
|
|
|
|
@contextmanager
|
|
def low_memory_init():
|
|
init_contexts = []
|
|
init_contexts.extend([init_empty_weights(), DisableTorchAllocTensor()])
|
|
# Load everything except Tensors' parameters
|
|
init_contexts.append(LazyLoadTensors())
|
|
# As we have muted the `torch.load`, this will trigger a key missing warning in hf
|
|
# but this matters not for we will load again later.
|
|
init_contexts.append(MuteHFLogger(logger=transformers.modeling_utils.logger))
|
|
with ContextManagers(init_contexts):
|
|
yield
|
|
|
|
|
|
def load_low_bit(model, model_path):
|
|
"""
|
|
Load the optimized pytorch model.
|
|
|
|
:param model: The PyTorch model instance
|
|
:param model_path: The path of saved optimized model
|
|
|
|
:return: The optimized model.
|
|
|
|
>>> # Example 1:
|
|
>>> # Take ChatGLM2-6B model as an example
|
|
>>> # Make sure you have saved the optimized model by calling 'save_low_bit'
|
|
>>> from ipex_llm.optimize import low_memory_init, load_low_bit
|
|
>>> with low_memory_init(): # Fast and low cost by loading model on meta device
|
|
>>> model = AutoModel.from_pretrained(saved_dir,
|
|
>>> torch_dtype="auto",
|
|
>>> trust_remote_code=True)
|
|
>>> model = load_low_bit(model, saved_dir) # Load the optimized model
|
|
|
|
>>> # Example 2:
|
|
>>> # If the model doesn't fit 'low_memory_init' method,
|
|
>>> # alternatively, you can obtain the model instance through traditional loading method.
|
|
>>> # Take OpenAI Whisper model as an example
|
|
>>> # Make sure you have saved the optimized model by calling 'save_low_bit'
|
|
>>> from ipex_llm.optimize import load_low_bit
|
|
>>> model = whisper.load_model('tiny') # A model instance through traditional loading method
|
|
>>> model = load_low_bit(model, saved_dir) # Load the optimized model
|
|
"""
|
|
low_bit = low_bit_sanity_check(model_path)
|
|
invalidInputError(isinstance(model, torch.nn.Module),
|
|
"model should be a instance of "
|
|
f"`torch.nn.Module`, but got {type(model)} at last.")
|
|
if low_bit:
|
|
invalidInputError(isinstance(model, torch.nn.Module),
|
|
"model should be an instance of `torch.nn.Module`, "
|
|
f"but got {type(model)} at last.")
|
|
invalidInputError(model.device.type in ('cpu', 'meta'),
|
|
"Expect model on device `cpu` or `meta`, "
|
|
f"but got device type {model.device.type}")
|
|
qtype = ggml_tensor_qtype[low_bit]
|
|
model = ggml_convert_low_bit(model, qtype=qtype, convert_shape_only=True)
|
|
|
|
resolved_archive_file, is_sharded = extract_local_archive_file(model_path, subfolder="")
|
|
if is_sharded:
|
|
# For now only shards transformers models
|
|
# can run in this branch.
|
|
resolved_archive_file, _ = \
|
|
get_local_shard_files(model_path,
|
|
resolved_archive_file,
|
|
subfolder="")
|
|
else:
|
|
resolved_archive_file = [os.path.join(model_path, PYTORCH_MODEL_NAME)]
|
|
|
|
for model_file in resolved_archive_file:
|
|
state_dict = torch.load(model_file)
|
|
for param_name, param in state_dict.items():
|
|
set_module_tensor_to_device(model, param_name, "cpu", param)
|
|
return model
|
|
|
|
|
|
def optimize_model(model, low_bit='sym_int4', optimize_llm=True, modules_to_not_convert=None,
|
|
cpu_embedding=False, lightweight_bmm=False, **kwargs):
|
|
"""
|
|
A method to optimize any pytorch model.
|
|
|
|
:param model: The original PyTorch model (nn.module)
|
|
:param low_bit: str value, options are ``'sym_int4'``, ``'asym_int4'``, ``'sym_int5'``,
|
|
``'asym_int5'``, ``'sym_int8'``, ``'nf3'``, ``'nf4'``, ``'fp4'``,
|
|
``'fp8'``, ``'fp8_e4m3'``, ``'fp8_e5m2'``, ``'fp16'`` or ``'bf16'``,
|
|
``'sym_int4'`` means symmetric int 4, ``'asym_int4'`` means
|
|
asymmetric int 4, ``'nf4'`` means 4-bit NormalFloat, etc.
|
|
Relevant low bit optimizations will be applied to the model.
|
|
:param optimize_llm: Whether to further optimize llm model. Default to be ``True``.
|
|
:param modules_to_not_convert: list of str value, modules (nn.Module) that are skipped
|
|
when conducting model optimizations. Default to be ``None``.
|
|
:param cpu_embedding: Whether to replace the Embedding layer, may need to set it
|
|
to ``True`` when running BigDL-LLM on GPU on Windows. Default to be ``False``.
|
|
:param lightweight_bmm: Whether to replace the torch.bmm ops, may need to set it
|
|
to ``True`` when running BigDL-LLM on GPU on Windows. Default to be ``False``.
|
|
|
|
:return: The optimized model.
|
|
|
|
>>> # Take OpenAI Whisper model as an example
|
|
>>> from ipex_llm import optimize_model
|
|
>>> model = whisper.load_model('tiny') # Load whisper model under pytorch framework
|
|
>>> model = optimize_model(model) # With only one line code change
|
|
>>> # Use the optimized model without other API change
|
|
>>> result = model.transcribe(audio, verbose=True, language="English")
|
|
>>> # (Optional) you can also save the optimized model by calling 'save_low_bit'
|
|
>>> model.save_low_bit(saved_dir)
|
|
"""
|
|
invalidInputError(low_bit in ggml_tensor_qtype,
|
|
f"Unknown load_in_low_bit value: {low_bit}, expected:"
|
|
f" sym_int4, asym_int4, sym_int5, asym_int5 or sym_int8.")
|
|
invalidInputError(isinstance(model, torch.nn.Module),
|
|
"model should be an instance of "
|
|
f"`torch.nn.Module`, but got {type(model)} at last.")
|
|
# To adapt vLLM models
|
|
if hasattr(model, 'device'):
|
|
invalidInputError(model.device.type in ('cpu', 'meta'),
|
|
"Expect model on device `cpu` or `meta`, "
|
|
f"but got device type {model.device.type}")
|
|
if kwargs.pop("replace_embedding", False):
|
|
warnings.warn("replace_embedding is deprecated and will be removed in a future version,"
|
|
" please use cpu_embedding instead.", FutureWarning)
|
|
cpu_embedding = True
|
|
if low_bit == "fp16":
|
|
torch_dtype = kwargs.get("torch_dtype", None)
|
|
if torch_dtype is not None and torch_dtype != torch.float16:
|
|
invalidInputError(False,
|
|
"Please use torch_dtype=torch.float16 when setting low_bit='fp16'.")
|
|
else:
|
|
torch_dtype = torch.float16
|
|
else:
|
|
torch_dtype = kwargs.get("torch_dtype", "auto")
|
|
qtype = ggml_tensor_qtype[low_bit]
|
|
model = ggml_convert_low_bit(model,
|
|
qtype=qtype,
|
|
torch_dtype=torch_dtype,
|
|
optimize_model=optimize_llm,
|
|
modules_to_not_convert=modules_to_not_convert,
|
|
cpu_embedding=cpu_embedding,
|
|
lightweight_bmm=lightweight_bmm,
|
|
enable_xetla=kwargs.pop("enable_xetla", False))
|
|
# add save_low_bit to pretrained model dynamically
|
|
import types
|
|
model._bigdl_config = dict()
|
|
model._bigdl_config["bigdl_transformers_low_bit"] = low_bit
|
|
model.save_low_bit = types.MethodType(_save_low_bit, model)
|
|
return model
|