* Add C-Eval HTML report * Fix C-Eval workflow pr trigger path * Fix C-Eval workflow typos * Add permissions to C-Eval workflow * Fix C-Eval workflow typo * Add pandas dependency * Fix C-Eval workflow typo
		
			
				
	
	
		
			138 lines
		
	
	
	
		
			5.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			138 lines
		
	
	
	
		
			5.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
# Python program to convert CSV to HTML Table
 | 
						|
 | 
						|
import os
 | 
						|
import sys
 | 
						|
import argparse
 | 
						|
import numpy as np
 | 
						|
import pandas as pd
 | 
						|
 | 
						|
def highlight_vals(val, max=3.0, color1='red', color2='green', color3='yellow', is_last=False):
 | 
						|
    if isinstance(val, float):
 | 
						|
        if val > max:
 | 
						|
            return 'background-color: %s' % color2
 | 
						|
        elif val <= -max:
 | 
						|
            return 'background-color: %s' % color1
 | 
						|
        elif val != 0.0 and is_last:
 | 
						|
            return 'background-color: %s' % color3
 | 
						|
    else:
 | 
						|
        return ''
 | 
						|
 | 
						|
def calculate_percentage_difference(cur_array, previous_array):
 | 
						|
    new_array = []
 | 
						|
    for i in range(len(cur_array)):
 | 
						|
        if type(cur_array[i]) == type(pd.NA) or type(previous_array[i]) == type(pd.NA):
 | 
						|
            new_array.append(pd.NA)
 | 
						|
        else:
 | 
						|
            new_array.append(round((cur_array[i]-previous_array[i])*100/previous_array[i], 2))
 | 
						|
    return np.array(new_array)
 | 
						|
 | 
						|
def check_diffs_within_normal_range(latest_csv, highlight_set, threshold):
 | 
						|
    within = True
 | 
						|
 | 
						|
    for column in highlight_set:
 | 
						|
        for value in latest_csv[column]:
 | 
						|
            if type(value) != type(pd.NA):
 | 
						|
                within = within and abs(value) <= threshold
 | 
						|
    
 | 
						|
    return within
 | 
						|
 | 
						|
 | 
						|
def main():
 | 
						|
    parser = argparse.ArgumentParser(description="convert .csv file to .html file")
 | 
						|
    parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
 | 
						|
                        help="The directory which stores the .csv file", default="/home/arda/BigDL/python/llm/dev/benchmark/ceval")
 | 
						|
    parser.add_argument("-t", "--threshold", type=float, dest="threshold",
 | 
						|
                        help="the threshold of highlight values", default=3.0)
 | 
						|
    parser.add_argument("-b", "--baseline_path", type=str, dest="baseline_path",
 | 
						|
                        help="the baseline path which stores the baseline.csv file")
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    csv_files = []
 | 
						|
    for file_name in os.listdir(args.folder_path):
 | 
						|
        file_path = os.path.join(args.folder_path, file_name)
 | 
						|
        if os.path.isfile(file_path) and file_name.endswith(".csv"):
 | 
						|
            csv_files.append(file_path)
 | 
						|
    csv_files.sort(reverse=True)
 | 
						|
 | 
						|
    highlight_threshold=args.threshold
 | 
						|
    
 | 
						|
    # get the newest csv file
 | 
						|
    latest_csv = pd.read_csv(csv_files[0], index_col=0)
 | 
						|
 | 
						|
    # create daily html file
 | 
						|
    daily_html=csv_files[0].split(".")[0]+".html"
 | 
						|
 | 
						|
    # add index column
 | 
						|
    latest_csv.reset_index(inplace=True)
 | 
						|
 | 
						|
    # if found more than 1 csv file
 | 
						|
    if len(csv_files)>1:
 | 
						|
        if args.baseline_path:
 | 
						|
            previous_csv = pd.read_csv(args.baseline_path, index_col=0)
 | 
						|
        else:
 | 
						|
            previous_csv = pd.read_csv(csv_files[1], index_col=0)
 | 
						|
 | 
						|
        subjects = ['STEM', 'Social Science', 'Humanities', 'Other', 'Hard', 'Average']
 | 
						|
        precisions = ['sym_int4', 'fp8_e5m2']
 | 
						|
        highlight_set = []
 | 
						|
 | 
						|
        insert_column = latest_csv.shape[-1]-1
 | 
						|
        # in the make_csv step we will handle the missing values and make it pd.NA
 | 
						|
        for subject in subjects:
 | 
						|
            # insert last accuracy task
 | 
						|
            latest_csv.insert(loc=insert_column, column=f'last_{subject}',
 | 
						|
                              value=previous_csv[subject])
 | 
						|
 | 
						|
            # insert precentage difference between previous and current value
 | 
						|
            latest_csv.insert(
 | 
						|
                loc=insert_column+1,
 | 
						|
                column=f'diff_{subject}(%)',
 | 
						|
                value=calculate_percentage_difference(latest_csv[subject], previous_csv[subject]))
 | 
						|
            # append in the highlight set
 | 
						|
            highlight_set.append(f'diff_{subject}(%)')
 | 
						|
 | 
						|
            # update insert column
 | 
						|
            insert_column += 2
 | 
						|
 | 
						|
        columns = {}
 | 
						|
        for column in latest_csv.columns.values.tolist():
 | 
						|
            columns[column] = '{:.2f}'
 | 
						|
 | 
						|
        styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=3.0, is_last=True), subset=highlight_set)
 | 
						|
        
 | 
						|
        # add css style to restrict width and wrap text
 | 
						|
        styled_df.set_table_styles([{
 | 
						|
            'selector': 'th, td',
 | 
						|
            'props': [('max-width', '88px'), ('word-wrap', 'break-word')]
 | 
						|
        }], overwrite=False)
 | 
						|
        
 | 
						|
        html_output = styled_df.set_table_attributes("border=1").to_html()
 | 
						|
 | 
						|
        with open(daily_html, 'w') as f:
 | 
						|
            f.write(html_output)
 | 
						|
    else:
 | 
						|
        latest_csv.to_html(daily_html)
 | 
						|
 | 
						|
    if args.baseline_path and not check_diffs_within_normal_range(latest_csv, highlight_set, highlight_threshold):
 | 
						|
        print("The diffs are outside the normal range: %" + str(highlight_threshold))
 | 
						|
        return 1 
 | 
						|
    return 0
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    sys.exit(main())
 |