86 lines
		
	
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			86 lines
		
	
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
 | 
						|
from transformers import AutoModelForCausalLM, AutoTokenizer
 | 
						|
from ipex_llm import optimize_model
 | 
						|
 | 
						|
# you could tune the prompt based on your own model,
 | 
						|
# here the prompt tuning refers to https://huggingface.co/databricks/dolly-v2-12b/blob/main/instruct_pipeline.py#L15
 | 
						|
DOLLY_V2_PROMPT_FORMAT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
 | 
						|
 | 
						|
### Instruction:
 | 
						|
{prompt}
 | 
						|
 | 
						|
### Response:
 | 
						|
"""
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Dolly v2 model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="databricks/dolly-v2-12b",
 | 
						|
                        help='The huggingface repo id for the Dolly v2 (e.g. `databricks/dolly-v2-7b` and `databricks/dolly-v2-12b`) to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                        help='Max tokens to predict')
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
 | 
						|
    # Load model
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
						|
                                                 trust_remote_code=True,
 | 
						|
                                                 torch_dtype='auto',
 | 
						|
                                                 low_cpu_mem_usage=True)
 | 
						|
 | 
						|
    # With only one line to enable IPEX-LLM optimization on model
 | 
						|
    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the optimize_model function.
 | 
						|
    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
						|
    model = optimize_model(model)
 | 
						|
 | 
						|
    model = model.to('xpu')
 | 
						|
 | 
						|
    # Load tokenizer
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    
 | 
						|
    # Generate predicted tokens
 | 
						|
    with torch.inference_mode():
 | 
						|
        prompt = DOLLY_V2_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
						|
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
						|
        end_key_token_id=tokenizer.encode("### End")[0]
 | 
						|
        # ipex_llm model needs a warmup, then inference time can be accurate
 | 
						|
        output = model.generate(input_ids,
 | 
						|
                                max_new_tokens=args.n_predict,
 | 
						|
                                pad_token_id=tokenizer.pad_token_id,
 | 
						|
                                eos_token_id=end_key_token_id)
 | 
						|
 | 
						|
        # start inference
 | 
						|
        st = time.time()
 | 
						|
        output = model.generate(input_ids,
 | 
						|
                                max_new_tokens=args.n_predict,
 | 
						|
                                pad_token_id=tokenizer.pad_token_id,
 | 
						|
                                eos_token_id=end_key_token_id)
 | 
						|
        torch.xpu.synchronize()
 | 
						|
        end = time.time()
 | 
						|
        output = output.cpu()
 | 
						|
        output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        print('-'*20, 'Output', '-'*20)
 | 
						|
        print(output_str)
 |