ipex-llm/python/llm/example/CPU
ZehuaCao 56cb992497
LLM: Modify CPU Installation Command for most examples (#11049)
* init

* refine

* refine

* refine

* modify hf-agent example

* modify all CPU model example

* remove readthedoc modify

* replace powershell with cmd

* fix repo

* fix repo

* update

* remove comment on windows code block

* update

* update

* update

* update

---------

Co-authored-by: xiangyuT <xiangyu.tian@intel.com>
2024-05-17 15:52:20 +08:00
..
Applications LLM: Modify CPU Installation Command for most examples (#11049) 2024-05-17 15:52:20 +08:00
Deepspeed-AutoTP LLM: Modify CPU Installation Command for most examples (#11049) 2024-05-17 15:52:20 +08:00
HF-Transformers-AutoModels LLM: Modify CPU Installation Command for most examples (#11049) 2024-05-17 15:52:20 +08:00
LangChain Add tokenizer_id in Langchain (#10588) 2024-04-03 14:25:35 +08:00
LlamaIndex Llamaindex: add tokenizer_id and support chat (#10590) 2024-04-07 13:51:34 +08:00
ModelScope-Models LLM: Modify CPU Installation Command for most examples (#11049) 2024-05-17 15:52:20 +08:00
Native-Models LLM: Modify CPU Installation Command for most examples (#11049) 2024-05-17 15:52:20 +08:00
PyTorch-Models LLM: Modify CPU Installation Command for most examples (#11049) 2024-05-17 15:52:20 +08:00
QLoRA-FineTuning Upgrade Peft to 0.10.0 in finetune examples and docker (#10930) 2024-05-07 15:12:26 +08:00
Speculative-Decoding Fix spculative llama3 no stop error (#10963) 2024-05-08 17:09:47 +08:00
vLLM-Serving Upgrade to python 3.11 (#10711) 2024-04-09 17:41:17 +08:00
README.md Update_document by heyang (#30) 2024-03-25 10:06:02 +08:00

IPEX-LLM Examples on Intel CPU

This folder contains examples of running IPEX-LLM on Intel CPU:

  • HF-Transformers-AutoModels: running any Hugging Face Transformers model on IPEX-LLM (using the standard AutoModel APIs)
  • QLoRA-FineTuning: running QLoRA finetuning using IPEX-LLM on intel CPUs
  • vLLM-Serving: running vLLM serving framework on intel CPUs (with IPEX-LLM low-bit optimized models)
  • Deepspeed-AutoTP: running distributed inference using DeepSpeed AutoTP (with IPEX-LLM low-bit optimized models)
  • LangChain: running LangChain applications on IPEX-LLM
  • Applications: running LLM applications (such as agent, streaming-llm) on BigDl-LLM
  • PyTorch-Models: running any PyTorch model on IPEX-LLM (with "one-line code change")
  • Native-Models: converting & running LLM in llama/chatglm/bloom/gptneox/starcoder model family using native (cpp) implementation
  • Speculative-Decoding: running any Hugging Face Transformers model with self-speculative decoding on Intel CPUs
  • ModelScope-Models: running ModelScope model with IPEX-LLM on Intel CPUs

System Support

Hardware:

  • Intel® Core™ processors
  • Intel® Xeon® processors

Operating System:

  • Ubuntu 20.04 or later (glibc>=2.17)
  • CentOS 7 or later (glibc>=2.17)
  • Windows 10/11, with or without WSL

Best Known Configuration on Linux

For better performance, it is recommended to set environment variables on Linux with the help of IPEX-LLM:

pip install ipex-llm
source ipex-llm-init