72 lines
		
	
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			72 lines
		
	
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import time
 | 
						|
import librosa
 | 
						|
import argparse
 | 
						|
 | 
						|
from transformers import pipeline
 | 
						|
from bigdl.llm.transformers import AutoModelForSpeechSeq2Seq
 | 
						|
from transformers.models.whisper import WhisperFeatureExtractor, WhisperTokenizer
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Recognize Long Segment using `generate()` API for Whisper model')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="openai/whisper-medium",
 | 
						|
                        help='The huggingface repo id for the Whisper model to be downloaded'
 | 
						|
                             ', or the path to the huggingface checkpoint folder')
 | 
						|
    parser.add_argument('--audio-file', type=str, required=True,
 | 
						|
                        help='The path of the audio file to be recognized.')
 | 
						|
    parser.add_argument('--language', type=str, default="english",
 | 
						|
                        help='language to be transcribed')
 | 
						|
    parser.add_argument('--batch-size', type=int, default=2,
 | 
						|
                        help='The batch_size of pipeline inference, '
 | 
						|
                             'it usually equals of length of the audio divided by chunk-length.')
 | 
						|
    parser.add_argument('--chunk-length', type=int, default=30,
 | 
						|
                        help="The maximum time lengths of chuncks of sampling_rate samples used to trim"
 | 
						|
                             "and pad longer or shorter audio sequences. Default to be 30s.")
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    # Path to the .wav audio file
 | 
						|
    audio_file_path = args.audio_file
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
 | 
						|
    # Load the input audio
 | 
						|
    y, sr = librosa.load(audio_file_path, sr=None)
 | 
						|
 | 
						|
    # Downsample the audio to 16kHz
 | 
						|
    target_sr = 16000
 | 
						|
    audio = librosa.resample(y,
 | 
						|
                            orig_sr=sr,
 | 
						|
                            target_sr=target_sr)
 | 
						|
 | 
						|
    model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path, load_in_4bit=True)
 | 
						|
    model.config.forced_decoder_ids = None
 | 
						|
 | 
						|
    pipe = pipeline(
 | 
						|
      "automatic-speech-recognition",
 | 
						|
      model=model,
 | 
						|
      feature_extractor= WhisperFeatureExtractor.from_pretrained(model_path),
 | 
						|
      tokenizer= WhisperTokenizer.from_pretrained(model_path, language=args.language),
 | 
						|
      chunk_length_s=args.chunk_length,
 | 
						|
    )
 | 
						|
 | 
						|
    start = time.time()
 | 
						|
    prediction = pipe(audio, batch_size=args.batch_size)["text"]
 | 
						|
    print(f"inference time is {time.time()-start}")
 | 
						|
 | 
						|
    print(prediction)
 |