ipex-llm/python/llm/src/ipex_llm/transformers/kv.py
Yina Chen dd46c141bd
Phi3 support compresskv (#11733)
* phi3 support compresskv

* fix phi3 mtl error

* fix conflict with quant kv

* fix abnormal on mtl

* fix style

* use slide windows size to compress kv

* support sliding window

* fix style

* fix style

* temp: partial support quant kv

* support quant kv with compress kv, todo: model check

* temp

* fix style

* fix style

* remove prepare

* address comment

* default -> 1.8k
2024-08-09 15:43:43 +08:00

351 lines
15 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import torch.nn.functional as F
import torch.nn as nn
import math
from .models.utils import (
init_fp8_kv_cache, append_fp8_kv_cache,
init_kv_cache, append_kv_cache, extend_kv_cache
)
from typing import Optional, Dict, Tuple, Any
from transformers.cache_utils import DynamicCache
from ipex_llm.utils.common.log4Error import invalidInputError
class DynamicFp8Cache(DynamicCache):
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]]=None,
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, num_heads, seq_len, head_dim = key_states.shape
if layer_idx == 0:
if hasattr(self, "_seen_tokens"):
# 4.39 uses `_seen_tokens`
self._seen_tokens += seq_len
else:
# 4.37 uses `seen_tokens`
self.seen_tokens += seq_len
# Update the cache
if len(self.key_cache) <= layer_idx:
k_cache, v_cache = init_fp8_kv_cache(
batch_size, num_heads, seq_len, head_dim,
device=key_states.device,
)
k_cache, v_cache = append_fp8_kv_cache(k_cache, v_cache, key_states, value_states)
self.key_cache.append(k_cache)
self.value_cache.append(v_cache)
else:
k_cache = self.key_cache[layer_idx]
v_cache = self.value_cache[layer_idx]
k_cache, v_cache = append_fp8_kv_cache(k_cache, v_cache, key_states, value_states)
self.key_cache[layer_idx] = k_cache
self.value_cache[layer_idx] = v_cache
return self.key_cache[layer_idx], self.value_cache[layer_idx]
class DynamicNormalCache(DynamicCache):
KV_ALLOC_BLOCK_LENGTH = 256
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]]=None,
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, num_heads, seq_len, head_dim = key_states.shape
if layer_idx == 0:
if hasattr(self, "_seen_tokens"):
# 4.39 uses `_seen_tokens`
self._seen_tokens += seq_len
else:
# 4.37 uses `seen_tokens`
self.seen_tokens += seq_len
# Update the cache
if len(self.key_cache) <= layer_idx:
k_cache, v_cache = init_kv_cache(
batch_size, num_heads, head_dim,
0, key_states.size(2) + self.KV_ALLOC_BLOCK_LENGTH,
key_states.dtype, key_states.device
)
k_cache, v_cache = append_kv_cache(k_cache, v_cache, key_states, value_states)
self.key_cache.append(k_cache)
self.value_cache.append(v_cache)
else:
k_cache = self.key_cache[layer_idx]
v_cache = self.value_cache[layer_idx]
kv_seq_len = k_cache.size(2) + key_states.size(2)
if k_cache.stride(1) < kv_seq_len * k_cache.size(3):
new_k_cache, new_v_cache = init_kv_cache(
batch_size, num_heads, head_dim,
k_cache.size(2), kv_seq_len + self.KV_ALLOC_BLOCK_LENGTH,
key_states.dtype, key_states.device
)
new_k_cache[...] = k_cache[...]
new_v_cache[...] = v_cache[...]
k_cache = new_k_cache
v_cache = new_v_cache
k_cache, v_cache = append_kv_cache(k_cache, v_cache, key_states, value_states)
self.key_cache[layer_idx] = k_cache
self.value_cache[layer_idx] = v_cache
return self.key_cache[layer_idx], self.value_cache[layer_idx]
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
The hidden states go from (batch, num_key_value_heads, seqlen, head_dim)
to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads,
n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
# This function is adapted from
# https://github.com/FasterDecoding/SnapKV/blob/main/snapkv/monkeypatch/snapkv_utils.py
def compress_kv(attn_config, key_states, query_states, value_states, attention_mask,
num_key_value_groups):
# check if prefix phase
invalidInputError(key_states.shape[-2] == query_states.shape[-2], "kv shape mismatch.")
if not hasattr(attn_config, 'window_size'):
attn_config.window_size = 32
if not hasattr(attn_config, 'max_capacity_prompt'):
attn_config.max_capacity_prompt = 1024
if not hasattr(attn_config, 'kernel_size'):
attn_config.kernel_size = 7
if not hasattr(attn_config, 'pooling'):
attn_config.pooling = 'maxpool'
bsz, num_heads, q_len, head_dim = query_states.shape
if q_len <= attn_config.max_capacity_prompt:
return key_states, value_states
else:
sliding_window_size = getattr(attn_config, "sliding_window", None)
if sliding_window_size is not None and sliding_window_size <= 2500:
return key_states[:, :, -sliding_window_size:, :], \
value_states[:, :, -sliding_window_size:, :]
else:
key_states_expand = repeat_kv(key_states, num_key_value_groups).to(key_states.device)
attn_weights = torch.matmul(query_states[..., -attn_config.window_size:, :],
key_states_expand.transpose(2, 3)) / math.sqrt(head_dim)
mask = torch.full((attn_config.window_size, attn_config.window_size),
torch.finfo(attn_weights.dtype).min,
device=attn_weights.device)
mask_cond = torch.arange(mask.size(-1), device=attn_weights.device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(attn_weights.device)
attention_mask = mask[None, None, :, :]
attn_weights[:, :, -attn_config.window_size:,
-attn_config.window_size:] += attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_weights_sum = attn_weights[:, :, -attn_config.window_size:,
:-attn_config.window_size].sum(dim=-2)
if attn_config.pooling == 'avgpool':
if num_key_value_groups > 1:
attn_cache = F.avg_pool2d(attn_weights_sum,
kernel_size=(num_key_value_groups,
attn_config.kernel_size),
padding=(0, attn_config.kernel_size//2),
stride=(num_key_value_groups, 1))
else:
attn_cache = F.avg_pool1d(attn_weights_sum, kernel_size=attn_config.kernel_size,
padding=attn_config.kernel_size//2, stride=1)
elif attn_config.pooling == 'maxpool':
if num_key_value_groups > 1:
attn_cache = F.max_pool2d(attn_weights_sum,
kernel_size=(num_key_value_groups,
attn_config.kernel_size),
padding=(0, attn_config.kernel_size//2),
stride=(num_key_value_groups, 1))
else:
attn_cache = F.max_pool1d(attn_weights_sum, kernel_size=attn_config.kernel_size,
padding=attn_config.kernel_size//2, stride=1)
else:
invalidInputError(False, 'Pooling method not supported')
indices = attn_cache.topk(attn_config.max_capacity_prompt - attn_config.window_size,
dim=-1).indices
indices = indices.unsqueeze(-1).expand(-1, -1, -1, head_dim)
k_past_compress = key_states[:, :, :-attn_config.window_size, :]\
.gather(dim=2, index=indices)
v_past_compress = value_states[:, :, :-attn_config.window_size, :]\
.gather(dim=2, index=indices)
k_cur = key_states[:, :, -attn_config.window_size:, :]
v_cur = value_states[:, :, -attn_config.window_size:, :]
key_states = torch.cat([k_past_compress, k_cur], dim=2)
value_states = torch.cat([v_past_compress, v_cur], dim=2)
return key_states, value_states
class DynamicCompressCache(DynamicCache):
def __init__(self, quant_kv=False, *args, **kwargs):
super().__init__(*args, **kwargs)
self.real_kv_len = 0
self.quant_kv = quant_kv
self.append_kv_func = append_fp8_kv_cache if quant_kv else append_kv_cache
def update_seen_tokens(self, layer_idx, q_len):
if layer_idx == 0:
if hasattr(self, "_seen_tokens"):
# 4.39 uses `_seen_tokens`
self._seen_tokens += q_len
else:
# 4.37 uses `seen_tokens`
self.seen_tokens += q_len
self.real_kv_len += q_len
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
query_states: torch.Tensor,
attention_mask: torch.Tensor,
num_key_value_groups: int,
attn_config: Dict[str, Any],
enough_kv_room: bool,
KV_CACHE_ALLOC_BLOCK_LENGTH: int,
cache_kwargs: Optional[Dict[str, Any]]=None,
) -> Tuple[torch.Tensor, torch.Tensor]:
bsz, num_heads, seq_len, head_dim = key_states.shape
if layer_idx == 0:
if hasattr(self, "_seen_tokens"):
# 4.39 uses `_seen_tokens`
self._seen_tokens += seq_len
else:
# 4.37 uses `seen_tokens`
self.seen_tokens += seq_len
self.real_kv_len += seq_len
# Update the cache
if len(self.key_cache) <= layer_idx:
# First token, compress kv cache
key_states_compress, value_states_compress = compress_kv(
attn_config=attn_config,
key_states=key_states,
query_states=query_states,
value_states=value_states,
attention_mask=attention_mask,
num_key_value_groups=num_key_value_groups)
self.key_cache.append(key_states_compress)
self.value_cache.append(value_states_compress)
if not self.quant_kv:
k_cache_compressed, v_cache_compressed = init_kv_cache(
bsz, num_heads, head_dim,
0, key_states_compress.size(2) + KV_CACHE_ALLOC_BLOCK_LENGTH,
key_states.dtype, key_states.device
)
else:
k_cache_compressed, v_cache_compressed = init_fp8_kv_cache(
bsz, num_heads, seq_len, head_dim,
device=key_states.device,
)
k_cache_compressed, v_cache_compressed = self.append_kv_func(
k_cache_compressed, v_cache_compressed,
key_states_compress, value_states_compress)
self.key_cache[layer_idx] = k_cache_compressed
self.value_cache[layer_idx] = v_cache_compressed
if key_states.stride(2) != head_dim:
if not self.quant_kv:
k_cache, v_cache = init_kv_cache(
bsz, num_heads, head_dim,
0, key_states.size(2),
key_states.dtype, key_states.device
)
else:
k_cache, v_cache = init_fp8_kv_cache(
bsz, num_heads, 0, head_dim, key_states.device
)
k_cache, v_cache = self.append_kv_func(k_cache, v_cache,
key_states, value_states)
return k_cache, v_cache
else:
return key_states, value_states
else:
cache_k = self.key_cache[layer_idx]
cache_v = self.value_cache[layer_idx]
if not enough_kv_room and not self.quant_kv:
# allocate new
new_c_k, new_c_v = extend_kv_cache(
bsz,
num_heads, # Support GQA
head_dim,
cache_k.size(2),
cache_k.size(2) + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=query_states.device)
new_c_k[:] = cache_k
new_c_v[:] = cache_v
cache_k = new_c_k
cache_v = new_c_v
key_states, value_states = self.append_kv_func(cache_k,
cache_v,
key_states,
value_states)
# update past_key_value
self.key_cache[layer_idx] = key_states
self.value_cache[layer_idx] = value_states
return self.key_cache[layer_idx], self.value_cache[layer_idx]
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer
index can be optionally passed."""
if len(self.key_cache) <= layer_idx:
return 0
return self.real_kv_len
@classmethod
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
quantize_kv: Optional[bool] = False) -> "DynamicCache":
"""Converts a cache in the legacy cache format into an equivalent `DynamicCache`."""
cache = cls(quantize_kv)
if past_key_values is not None:
for layer_idx in range(len(past_key_values)):
key_states, value_states = past_key_values[layer_idx]
cache.update(key_states, value_states, layer_idx)
return cache