* add llama2 and chatglm optimize_model examples * update default usage * update command and some descriptions * move folder and remove general_int4 descriptions * change folder name
58 lines
2.2 KiB
Python
58 lines
2.2 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
|
|
import whisper
|
|
import time
|
|
import librosa
|
|
import argparse
|
|
from bigdl.llm import optimize_model
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Recognize Tokens using `transcribe()` API for Openai Whisper model')
|
|
parser.add_argument('--model-name', type=str, default="tiny",
|
|
help="The model name(tiny, medium, base, etc.) for the Whisper model to be downloaded."
|
|
"It is one of the official model names listed by `whisper.available_models()`, or"
|
|
"path to a model checkpoint containing the model dimensions and the model state_dict.")
|
|
parser.add_argument('--audio-file', type=str, required=True,
|
|
help='The path of the audio file to be recognized.')
|
|
parser.add_argument('--language', type=str, default="English",
|
|
help='language to be transcribed')
|
|
args = parser.parse_args()
|
|
|
|
# Load the input audio
|
|
y, sr = librosa.load(args.audio_file)
|
|
|
|
# Downsample the audio to 16kHz
|
|
target_sr = 16000
|
|
audio = librosa.resample(y,
|
|
orig_sr=sr,
|
|
target_sr=target_sr)
|
|
|
|
# Load whisper model under pytorch framework
|
|
model = whisper.load_model(args.model_name)
|
|
|
|
# With only one line to enable bigdl optimize on a pytorch model
|
|
model = optimize_model(model)
|
|
|
|
st = time.time()
|
|
result = model.transcribe(audio, verbose=True, language=args.language)
|
|
end = time.time()
|
|
print(f'Inference time: {end-st} s')
|
|
|
|
print('-'*20, 'Output', '-'*20)
|
|
print(result["text"])
|