778 lines
35 KiB
Python
778 lines
35 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import os
|
|
os.environ["OMP_NUM_THREADS"] = "8"
|
|
os.environ["IPEX_LLM_LAST_LM_HEAD"] = "1"
|
|
import torch
|
|
import time
|
|
import argparse
|
|
|
|
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
|
from transformers import AutoTokenizer
|
|
from intel_npu_acceleration_library.backend.factory import NNFactory
|
|
from typing import Optional, Sequence, List, Union, Any, Tuple
|
|
import numpy as np
|
|
import math
|
|
from intel_npu_acceleration_library.backend.runtime import set_contiguous, record_function
|
|
from intel_npu_acceleration_library.backend.runtime import adapt_output_tensor, _model_cache
|
|
from collections import deque
|
|
from transformers.cache_utils import Cache
|
|
from intel_npu_acceleration_library.backend.bindings import lib as backend_lib
|
|
import ctypes
|
|
from ipex_llm.utils.common import invalidInputError
|
|
from typing import Optional, List, Generator
|
|
import uuid
|
|
from functools import partial
|
|
import torch.nn.functional as F
|
|
import torch.nn.parallel
|
|
import torch.distributed as dist
|
|
from filelock import FileLock
|
|
|
|
from transformers.utils import logging
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
@torch.no_grad()
|
|
def run_model(
|
|
x: Union[torch.Tensor, List[torch.Tensor]],
|
|
weights: List[torch.Tensor],
|
|
backend_cls: Any,
|
|
op_id: str,
|
|
replica: int = 1,
|
|
) -> torch.Tensor:
|
|
"""Run a factory operation. Depending on the datatype of the weights it runs a float or quantized operation.
|
|
|
|
Args:
|
|
x (Union[torch.Tensor, List[torch.Tensor]]): Activation tensor(s). Its dtype must be torch.float16
|
|
weights (torch.Tensor): Weights tensor. Its dtype can be torch.float16 or torch.int8
|
|
backend_cls (Any): Backend class to run
|
|
op_id (Optional[str], optional): Operation ID. Defaults to None.
|
|
|
|
Returns:
|
|
torch.Tensor: result
|
|
"""
|
|
global _model_cache
|
|
import time
|
|
t0 = time.perf_counter()
|
|
|
|
# Use or not op_id depending on the class used
|
|
op_kwargs = {"op_id": op_id} if op_id else {}
|
|
|
|
if not isinstance(x, (list, tuple)):
|
|
x = [x]
|
|
|
|
# Reshape input
|
|
input_dtype = x[0].dtype
|
|
x_np = [set_contiguous(elem).to(torch.float16).numpy() for elem in x]
|
|
op_args = []
|
|
op_args_flatten = []
|
|
for w in weights:
|
|
if isinstance(w, tuple): # from QuantizedLinear
|
|
op_args.append((set_contiguous(w[0]).numpy(), set_contiguous(w[1]).numpy()))
|
|
op_args_flatten.append(op_args[-1][0])
|
|
op_args_flatten.append(op_args[-1][1])
|
|
else:
|
|
op_args.append(set_contiguous(w).to(torch.float16).numpy())
|
|
op_args_flatten.append(op_args[-1])
|
|
|
|
shape_dtype_signature = "_".join(
|
|
["_".join(str(dim) for dim in t.shape) + f"_{t.dtype}" for t in x_np + op_args_flatten]
|
|
)
|
|
key = f"{backend_cls.func.__name__}_{shape_dtype_signature}"
|
|
models = _model_cache.get(key, None)
|
|
|
|
input_shapes = [elem.shape for elem in x_np]
|
|
if models is None:
|
|
_model_cache[key] = deque([backend_cls(*input_shapes) for i in range(replica)])
|
|
elif len(models) < 1:
|
|
_model_cache[key].append(backend_cls(*input_shapes))
|
|
else:
|
|
_model_cache[key].rotate(1)
|
|
|
|
# Get the model
|
|
model = _model_cache[key][0]
|
|
|
|
with record_function(f"npu_factory_mul_{key}"):
|
|
ret = model.run(x_np, *op_args, **op_kwargs)
|
|
|
|
if isinstance(ret, list):
|
|
results = [adapt_output_tensor(r, r.shape, input_dtype) for r in ret]
|
|
else:
|
|
results = adapt_output_tensor(ret, ret.shape, input_dtype)
|
|
|
|
return results
|
|
|
|
|
|
class LowBitLlamaMultiDecoderlayer(NNFactory):
|
|
def __init__(
|
|
self,
|
|
# batch_size: int,
|
|
# seq_len: int,
|
|
# hidden_size: int,
|
|
hidden_shape: Sequence[int],
|
|
*shapes,
|
|
num_heads: int,
|
|
num_key_value_heads: int,
|
|
num_layers: int,
|
|
cached_cos,
|
|
cached_sin,
|
|
input_layernorm_weights=None,
|
|
post_attn_layernorm_weights=None,
|
|
mode: str = "prefill",
|
|
dtype: np.dtype = np.int8,
|
|
max_seq_len: int = 1024,
|
|
transpose_value: bool = False,
|
|
profile: bool = False,
|
|
device: str = "NPU",
|
|
rms_norm_eps,
|
|
intermediate_size,
|
|
):
|
|
super().__init__(profile, device)
|
|
self.max_seq_len = max_seq_len
|
|
self.intermediate_size = intermediate_size
|
|
self.dtype = dtype
|
|
self.cached_cos = cached_cos
|
|
self.cached_sin = cached_sin
|
|
self.batch_size, self.seq_len, self.hidden_size = hidden_shape
|
|
self.mode = mode
|
|
self.rms_norm_eps = rms_norm_eps
|
|
self.transpose_value = transpose_value
|
|
|
|
cos = self.constant(self.cached_cos)
|
|
self.cos = self.unsqueeze(cos, axis=0)
|
|
|
|
sin = self.constant(self.cached_sin)
|
|
self.sin = self.unsqueeze(sin, axis=0)
|
|
|
|
if mode == "decode":
|
|
assert self.seq_len == 1, "seq_len must be 1 for decode mode"
|
|
self.kv_seq_len = self.max_seq_len + 1
|
|
else:
|
|
self.kv_seq_len = self.seq_len
|
|
|
|
self.num_heads = num_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
|
|
|
# define input, the order self.parameter matters
|
|
input = self.parameter((self.batch_size, self.seq_len, self.hidden_size))
|
|
|
|
# Self Attention
|
|
if mode == "decode":
|
|
attention_mask = self.parameter((self.batch_size, 1, 1, self.max_seq_len + 1))
|
|
else:
|
|
attention_mask = self.parameter((self.batch_size, 1, self.seq_len, self.seq_len))
|
|
|
|
|
|
position_ids = self.parameter((self.batch_size, self.seq_len))
|
|
past_keys = []
|
|
past_values = []
|
|
if mode == "decode":
|
|
for i in range(num_layers):
|
|
past_key = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
|
|
if transpose_value:
|
|
past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.head_dim, self.max_seq_len))
|
|
else:
|
|
past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
|
|
past_keys.append(past_key)
|
|
past_values.append(past_value)
|
|
else:
|
|
past_keys = [None] * num_layers
|
|
past_values = [None] * num_layers
|
|
|
|
if input_layernorm_weights is None:
|
|
assert post_attn_layernorm_weights is None
|
|
input_layernorm_weights = []
|
|
post_attn_layernorm_weights = []
|
|
for i in range(num_layers):
|
|
input_layernorm_weights.append(self.parameter((1, self.hidden_size,)))
|
|
post_attn_layernorm_weights.append(self.parameter((1, self.hidden_size,)))
|
|
else:
|
|
input_layernorm_weights = [self.constant(w) for w in input_layernorm_weights]
|
|
post_attn_layernorm_weights = [self.constant(w) for w in post_attn_layernorm_weights]
|
|
|
|
hidden_states = input
|
|
|
|
curr_key_values = []
|
|
for i in range(num_layers):
|
|
hidden_states, new_key_states, new_value_states = self.build_decoder(hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
input_layernorm_weight=input_layernorm_weights[i],
|
|
post_attention_layernorm_weight=post_attn_layernorm_weights[i],
|
|
past_key=past_keys[i],
|
|
past_value=past_values[i],)
|
|
curr_key_values.append((new_key_states, new_value_states))
|
|
|
|
|
|
# define outputs
|
|
hidden_states = self.convert_to_fp16(hidden_states)
|
|
|
|
for i in range(num_layers):
|
|
new_key_states = self.convert_to_fp16(curr_key_values[i][0])
|
|
new_value_states = self.convert_to_fp16(curr_key_values[i][1])
|
|
|
|
with FileLock("decoder_compile.lock"):
|
|
print("start compiling")
|
|
self.compile()
|
|
|
|
def repeat_kv(self, hidden_states, n_rep, transpose=False):
|
|
if n_rep == 1:
|
|
return hidden_states
|
|
if not transpose:
|
|
hidden_states = self.reshape(hidden_states, [self.batch_size, self.num_key_value_heads, 1, self.kv_seq_len, self.head_dim])
|
|
hidden_states = self.broadcast(hidden_states, [self.batch_size, self.num_key_value_heads, n_rep, self.kv_seq_len, self.head_dim])
|
|
hidden_states = self.reshape(hidden_states, [self.batch_size, n_rep*self.num_key_value_heads, self.kv_seq_len, self.head_dim])
|
|
else:
|
|
hidden_states = self.reshape(hidden_states, [self.batch_size, self.num_key_value_heads, 1, self.head_dim, self.kv_seq_len])
|
|
hidden_states = self.broadcast(hidden_states, [self.batch_size, self.num_key_value_heads, n_rep, self.head_dim, self.kv_seq_len])
|
|
hidden_states = self.reshape(hidden_states, [self.batch_size, n_rep*self.num_key_value_heads, self.head_dim, self.kv_seq_len])
|
|
return hidden_states
|
|
|
|
def build_decoder(self, hidden_states, attention_mask, position_ids,
|
|
input_layernorm_weight, post_attention_layernorm_weight,
|
|
past_key = None,
|
|
past_value = None):
|
|
|
|
residual = hidden_states
|
|
|
|
input_2d = self.reshape(hidden_states, (self.batch_size * self.seq_len, self.hidden_size))
|
|
|
|
# input layernorm
|
|
input_2d = self.convert_to_fp32(input_2d)
|
|
# variance = self.reduce_mean(self.eltwise_mul(input_2d, input_2d), -1, keep_dims=True)
|
|
variance = self.reduce_mean(self.power(input_2d, self.constant(np.array([[2]], dtype=np.float32))), -1, keep_dims=True)
|
|
eps = self.constant(self.rms_norm_eps)
|
|
input_2d = self.eltwise_div(input_2d, self.sqrt(self.eltwise_add(variance, eps)))
|
|
# input_layernorm_weight = self.constant(input_layernorm_weight)
|
|
input_layernorm_weight = self.convert_to_fp32(input_layernorm_weight)
|
|
input_2d = self.eltwise_mul(input_layernorm_weight, input_2d)
|
|
input_2d = self.convert_to_fp16(input_2d)
|
|
|
|
# attention
|
|
query_states = self.linear(input_2d, self.num_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
|
|
key_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
|
|
value_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
|
|
|
|
# cos = self.constant(self.cached_cos)
|
|
# cos = self.unsqueeze(cos, axis=0)
|
|
|
|
# sin = self.constant(self.cached_sin)
|
|
# sin = self.unsqueeze(sin, axis=0)
|
|
|
|
query_states = self.reshape(query_states, [self.batch_size, self.seq_len, self.num_heads, self.head_dim])
|
|
key_states = self.reshape(key_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
|
|
value_states = self.reshape(value_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
|
|
|
|
query_states = self.transpose(query_states, [0, 2, 1, 3])
|
|
key_states = self.transpose(key_states, [0, 2, 1, 3])
|
|
if self.transpose_value:
|
|
value_states = self.transpose(value_states, [0, 2, 3, 1])
|
|
else:
|
|
value_states = self.transpose(value_states, [0, 2, 1, 3])
|
|
|
|
query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, self.cos, self.sin, position_ids)
|
|
new_key_states = key_states
|
|
new_value_states = value_states
|
|
|
|
|
|
|
|
if self.mode == "decode":
|
|
key_states = self.concat(past_key, key_states, axis=-2)
|
|
if self.transpose_value:
|
|
value_states = self.concat(past_value, value_states, axis=-1)
|
|
else:
|
|
value_states = self.concat(past_value, value_states, axis=-2)
|
|
|
|
# repeat_kv cannot be implemented because Broadcast op is needed
|
|
key_states = self.repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = self.repeat_kv(value_states, self.num_key_value_groups, self.transpose_value)
|
|
|
|
attn_weight = self.matmul(query_states, key_states, False, True) / (math.sqrt(self.head_dim))
|
|
attn_weight = self.eltwise_add(attn_weight, attention_mask)
|
|
attn_weight = self.convert_to_fp32(attn_weight)
|
|
attn_weight = self.softmax(attn_weight, -1)
|
|
attn_weight = self.convert_to_fp16(attn_weight)
|
|
attn_output = self.matmul(attn_weight, value_states, False, self.transpose_value)
|
|
|
|
|
|
attn_output = self.transpose(attn_output, [0, 2, 1, 3])
|
|
attn_output = self.reshape(attn_output, [self.batch_size, self.seq_len, self.hidden_size])
|
|
|
|
attn_output = self.linear(attn_output, self.hidden_size, self.hidden_size, bias=False, wt_dtype=self.dtype)
|
|
|
|
hidden_states = self.eltwise_add(residual, attn_output)
|
|
|
|
# Fully Connected
|
|
residual = hidden_states
|
|
# post_attention_layernorm forward
|
|
|
|
hidden_states = self.convert_to_fp32(hidden_states)
|
|
variance = self.reduce_mean(self.power(hidden_states, self.constant(np.array([[[2]]], dtype=np.float32))), -1, keep_dims=True)
|
|
hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
|
|
# post_attention_layernorm_weight = self.constant(post_attention_layernorm_weight)
|
|
post_attention_layernorm_weight = self.convert_to_fp32(post_attention_layernorm_weight)
|
|
hidden_states = self.eltwise_mul(post_attention_layernorm_weight, hidden_states)
|
|
hidden_states = self.convert_to_fp16(hidden_states)
|
|
|
|
# mlp
|
|
mm1 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
|
|
bias=False, wt_dtype=self.dtype)
|
|
mm2 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
|
|
bias=False, wt_dtype=self.dtype) # type: ignore[attr-defined]
|
|
mm1 = self.eltwise_mul(self.swish(mm1), mm2) # type: ignore[attr-defined]
|
|
|
|
hidden_states = self.linear(mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=self.dtype)
|
|
|
|
hidden_states = self.eltwise_add(residual, hidden_states)
|
|
hidden_states = self.convert_to_fp16(hidden_states)
|
|
|
|
return hidden_states, new_key_states, new_value_states
|
|
|
|
def rotate_half(self, x):
|
|
x1 = self.slice(x, [0, 0, 0, 0], [self.batch_size, self.num_heads, self.seq_len, self.head_dim//2], )
|
|
x2 = self.slice(x, [0, 0, 0, self.head_dim//2], [self.batch_size, self.num_heads, self.seq_len, self.head_dim])
|
|
return self.concat(self.negative(x2), x1, axis=-1)
|
|
|
|
def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids):
|
|
position_ids = self.squeeze(position_ids)
|
|
cos = self.gather(cos, self.convert_to_int32(position_ids), self.constant(1), 0)
|
|
sin = self.gather(sin, self.convert_to_int32(position_ids), self.constant(1), 0)
|
|
cos = self.unsqueeze(cos, [1])
|
|
sin = self.unsqueeze(sin, [1])
|
|
|
|
q_embed = self.eltwise_add(self.eltwise_mul(q, cos), self.eltwise_mul(self.rotate_half(q), sin))
|
|
k_embed = self.eltwise_add(self.eltwise_mul(k, cos), self.eltwise_mul(self.rotate_half(k), sin))
|
|
|
|
return q_embed, k_embed
|
|
|
|
|
|
class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
parameters: List[Tuple[torch.Tensor]],
|
|
input_laynorm_weights: List[torch.Tensor],
|
|
post_attn_layernorm_weights: List[torch.Tensor],
|
|
layer_indexes : List[int],
|
|
cached_cos,
|
|
cached_sin,
|
|
# rotary_emb,
|
|
# batch_size: int,
|
|
# seq_len: int,
|
|
# hidden_size: int,
|
|
num_heads: int,
|
|
head_dim: int,
|
|
num_key_value_heads: int,
|
|
rms_norm_eps,
|
|
intermediate_size,
|
|
max_seq_len: int = 1024,
|
|
transpose_value: bool = False,
|
|
):
|
|
super().__init__()
|
|
|
|
op_parameters = []
|
|
for w in parameters:
|
|
if isinstance(w, tuple): # from QuantizedLinear
|
|
op_parameters.append((w[0].numpy(), w[1].numpy()))
|
|
else:
|
|
op_parameters.append(w.to(torch.float16).numpy())
|
|
self.op_parameters = op_parameters
|
|
self.op_id = str(uuid.uuid4())
|
|
# self.layer_idx = layer_idx
|
|
self.max_seq_len = max_seq_len
|
|
self.transpose_value = transpose_value
|
|
# self.rotary_emb = rotary_emb
|
|
if isinstance(parameters[0], tuple): # weight, scale from QuantizedLinear
|
|
np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
|
|
assert np_dtype == np.uint8
|
|
assert parameters[0][1].dtype == torch.float16, parameters[0]
|
|
else: # FP16 Linear
|
|
assert False, "should not be here"
|
|
np_dtype = np.float16
|
|
|
|
self.layer_indexes = layer_indexes
|
|
self.num_layers_1 = len(self.layer_indexes) // 2
|
|
self.num_layers_0 = len(self.layer_indexes) - self.num_layers_1
|
|
|
|
assert self.num_layers_1 + self.num_layers_0 == len(input_laynorm_weights)
|
|
assert self.num_layers_1 + self.num_layers_0 == len(post_attn_layernorm_weights)
|
|
|
|
print("create dedcoder layer")
|
|
self.backend_cls_decode_0 = LowBitLlamaMultiDecoderlayer([1, 1, num_heads*head_dim],
|
|
input_layernorm_weights=input_laynorm_weights[:self.num_layers_0],
|
|
post_attn_layernorm_weights=post_attn_layernorm_weights[:self.num_layers_0],
|
|
cached_cos=cached_cos,
|
|
cached_sin=cached_sin,
|
|
num_heads=num_heads,
|
|
num_key_value_heads=num_key_value_heads,
|
|
num_layers=self.num_layers_0,
|
|
max_seq_len=max_seq_len,
|
|
rms_norm_eps=rms_norm_eps,
|
|
intermediate_size=intermediate_size,
|
|
mode="decode",
|
|
transpose_value=self.transpose_value,
|
|
dtype=np_dtype)
|
|
self.backend_cls_decode_1 = LowBitLlamaMultiDecoderlayer([1, 1, num_heads*head_dim],
|
|
input_layernorm_weights=input_laynorm_weights[self.num_layers_0:],
|
|
post_attn_layernorm_weights=post_attn_layernorm_weights[self.num_layers_0:],
|
|
cached_cos=cached_cos,
|
|
cached_sin=cached_sin,
|
|
num_heads=num_heads,
|
|
num_key_value_heads=num_key_value_heads,
|
|
num_layers=self.num_layers_1,
|
|
max_seq_len=max_seq_len,
|
|
rms_norm_eps=rms_norm_eps,
|
|
intermediate_size=intermediate_size,
|
|
mode="decode",
|
|
transpose_value=self.transpose_value,
|
|
dtype=np_dtype)
|
|
print("created dedcoder layer")
|
|
|
|
assert (self.num_layers_0 + self.num_layers_1) * 7 == len(op_parameters)
|
|
|
|
self.backend_cls_decode_0.setWeights(3+self.num_layers_0*2, self.op_id, *op_parameters[:self.num_layers_0*7])
|
|
backend_lib.run(self.backend_cls_decode_0._mm)
|
|
|
|
print("first inference done")
|
|
|
|
self.backend_cls_decode_1.setWeights(3+self.num_layers_1*2, self.op_id, *op_parameters[self.num_layers_0*7:])
|
|
|
|
|
|
print("weight setted")
|
|
backend_lib.run(self.backend_cls_decode_1._mm)
|
|
|
|
print("2nd inference done")
|
|
|
|
self.kv_cache_c_parameter_handel = (None, None)
|
|
self.kv_cache_parameters = None
|
|
self.kv_cache_prefetched = False
|
|
|
|
|
|
def forward(self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
**kwargs,) -> torch.Tensor:
|
|
"""Torch module forward method.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor
|
|
|
|
Returns:
|
|
torch.Tensor: result
|
|
"""
|
|
seq_len = hidden_states.shape[1]
|
|
pad_len = self.max_seq_len + 1 - attention_mask.size(-1)
|
|
|
|
pad_mask = (0, pad_len)
|
|
padded_attention_mask = F.pad(attention_mask.to(torch.float16), pad_mask,
|
|
value=torch.finfo(torch.float16).min)
|
|
padded_attention_mask[:,:,:,-1] = 0.0
|
|
inputs = (hidden_states.to(torch.float16),
|
|
padded_attention_mask,
|
|
position_ids,
|
|
)
|
|
|
|
if self.kv_cache_parameters is None:
|
|
self.kv_cache_parameters = []
|
|
self.kv_cache_c_parameter_handel = None
|
|
self.kv_cache_prefetched = False
|
|
else:
|
|
# the case kv cache changed
|
|
cached_prt = self.kv_cache_parameters[0].storage().data_ptr()
|
|
current_ptr = past_key_value.key_cache[self.layer_indexes[0]].storage().data_ptr()
|
|
if cached_prt != current_ptr:
|
|
# print("kv cache changed")
|
|
self.kv_cache_parameters = []
|
|
self.kv_cache_c_parameter_handel = (None, None)
|
|
self.kv_cache_prefetched = False
|
|
|
|
if len(self.kv_cache_parameters) == 0:
|
|
for idx in self.layer_indexes:
|
|
past_key = past_key_value.key_cache[idx]
|
|
past_value = past_key_value.value_cache[idx]
|
|
|
|
assert past_key.dtype == torch.float16, f"past_key dtype is {past_key.dtype}"
|
|
|
|
new_size = (past_key.size(0),
|
|
past_key.size(1),
|
|
self.max_seq_len,
|
|
past_key.size(3))
|
|
past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
|
|
assert past_key.is_contiguous()
|
|
past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
|
|
if self.transpose_value:
|
|
past_value = past_value.transpose(-1, -2)
|
|
assert past_value.is_contiguous()
|
|
|
|
self.kv_cache_parameters.append(past_key)
|
|
self.kv_cache_parameters.append(past_value)
|
|
handle_0 = self.backend_cls_decode_0.create_parameters([p.numpy() for p in self.kv_cache_parameters[:self.num_layers_0*2]])
|
|
handle_1 = self.backend_cls_decode_1.create_parameters([p.numpy() for p in self.kv_cache_parameters[self.num_layers_0*2:]])
|
|
assert len(self.kv_cache_parameters) == (self.num_layers_0 + self.num_layers_1) * 2
|
|
self.kv_cache_c_parameter_handel = (handle_0, handle_1)
|
|
|
|
x_np = [elem.to(torch.float16).numpy() for elem in inputs]
|
|
|
|
key_value_states = []
|
|
|
|
with record_function(f"npu_factory"):
|
|
if not self.kv_cache_prefetched:
|
|
self.backend_cls_decode_0.load_wt_fn(len(inputs), self.backend_cls_decode_0._mm, self.kv_cache_c_parameter_handel[0])
|
|
self.backend_cls_decode_1.load_wt_fn(len(inputs), self.backend_cls_decode_1._mm, self.kv_cache_c_parameter_handel[1])
|
|
|
|
models_ptr = (ctypes.POINTER(ctypes.c_char) * 2)(self.backend_cls_decode_0._mm, self.backend_cls_decode_1._mm)
|
|
inputs_ptr = (ctypes.c_void_p * 3)(x_np[0].ctypes.data_as(ctypes.c_void_p), x_np[1].ctypes.data_as(ctypes.c_void_p), x_np[2].ctypes.data_as(ctypes.c_void_p))
|
|
|
|
backend_lib.run_decoders(models_ptr, inputs_ptr, 2, 3)
|
|
|
|
for i in range(1, len(self.backend_cls_decode_0.torch_out)):
|
|
key_value_states.append(self.backend_cls_decode_0.torch_out[i])
|
|
|
|
for i in range(1, len(self.backend_cls_decode_1.torch_out)):
|
|
key_value_states.append(self.backend_cls_decode_1.torch_out[i])
|
|
|
|
hidden_states = self.backend_cls_decode_1.torch_out[0]
|
|
|
|
cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len, "transpose": self.transpose_value}
|
|
for i in range(len(self.layer_indexes)):
|
|
key_states, value_states = past_key_value.update(key_value_states[2*i],
|
|
key_value_states[2*i+1],
|
|
self.layer_indexes[i], cache_kwargs)
|
|
|
|
self.backend_cls_decode_0.load_wt_fn(len(inputs), self.backend_cls_decode_0._mm, self.kv_cache_c_parameter_handel[0])
|
|
self.backend_cls_decode_1.load_wt_fn(len(inputs), self.backend_cls_decode_1._mm, self.kv_cache_c_parameter_handel[1])
|
|
self.kv_cache_prefetched = True
|
|
|
|
outputs = (hidden_states,)
|
|
outputs += (past_key_value,)
|
|
return outputs
|
|
|
|
|
|
class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
|
|
"""LLAMA MLP operation NPU backend."""
|
|
|
|
def __init__(
|
|
self,
|
|
parameters: List[torch.Tensor],
|
|
cached_cos,
|
|
cached_sin,
|
|
layer_norm_0,
|
|
layer_norm_1,
|
|
num_heads: int,
|
|
num_key_value_heads: int,
|
|
layer_idx: int,
|
|
rms_norm_eps,
|
|
intermediate_size,
|
|
max_seq_len: int = 128,
|
|
transpose_value: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.op_parameters = parameters
|
|
self.op_id = str(uuid.uuid4())
|
|
self.layer_idx = layer_idx
|
|
self.max_seq_len = max_seq_len
|
|
self.transpose_value = transpose_value
|
|
# self.rotary_emb = rotary_emb
|
|
if isinstance(parameters[0], tuple): # weight, scale from QuantizedLinear
|
|
np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
|
|
else: # FP16 Linear
|
|
np_dtype = np.float16
|
|
|
|
self.backend_cls_prefill = partial(LowBitLlamaMultiDecoderlayer,
|
|
num_heads=num_heads,
|
|
num_key_value_heads=num_key_value_heads,
|
|
num_layers=1,
|
|
cached_cos=cached_cos,
|
|
cached_sin=cached_sin,
|
|
input_layernorm_weights=None,
|
|
post_attn_layernorm_weights=None,
|
|
max_seq_len=max_seq_len,
|
|
rms_norm_eps=rms_norm_eps,
|
|
intermediate_size=intermediate_size,
|
|
mode="prefill",
|
|
transpose_value=self.transpose_value,
|
|
dtype=np_dtype)
|
|
self.layer_norm_0 = layer_norm_0
|
|
self.layer_norm_1 = layer_norm_1
|
|
|
|
def forward(self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
**kwargs,) -> torch.Tensor:
|
|
"""Torch module forward method.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor
|
|
|
|
Returns:
|
|
torch.Tensor: result
|
|
"""
|
|
assert not output_attentions
|
|
# assert cache_position is None
|
|
# assert use_cache
|
|
|
|
seq_len = hidden_states.shape[1]
|
|
|
|
backend_cls = self.backend_cls_prefill
|
|
inputs = (hidden_states.to(torch.float16), attention_mask, position_ids)
|
|
inputs += (self.layer_norm_0, self.layer_norm_1)
|
|
# print("start run_model prefill")
|
|
hidden_states, past_key, past_value = run_model(inputs, self.op_parameters, backend_cls, self.op_id, replica=1)
|
|
# print("end run model prefill")
|
|
cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len, "transpose": self.transpose_value}
|
|
key_states, value_states = past_key_value.update(past_key, past_value, self.layer_idx, cache_kwargs)
|
|
|
|
outputs = (hidden_states,)
|
|
outputs += (past_key_value,)
|
|
return outputs
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for npu model')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
|
help='The huggingface repo id for the Llama2 model to be downloaded'
|
|
', or the path to the huggingface checkpoint folder')
|
|
parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun",
|
|
help='Prompt to infer')
|
|
parser.add_argument('--n-predict', type=int, default=32,
|
|
help='Max tokens to predict')
|
|
parser.add_argument('--max-seq-len', type=int, default=1024)
|
|
parser.add_argument('--transpose-value-cache', action="store_true", default=False)
|
|
|
|
args = parser.parse_args()
|
|
model_path = args.repo_id_or_model_path
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
os.environ['MASTER_ADDR'] = '127.0.0.1'
|
|
os.environ['MASTER_PORT'] = '29501'
|
|
|
|
dist.init_process_group()
|
|
my_rank = dist.get_rank()
|
|
my_size = dist.get_world_size()
|
|
logger.info(f"rank: {my_rank}, size: {my_size}")
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16,
|
|
trust_remote_code=True, attn_implementation="eager",
|
|
load_in_low_bit="sym_int4", pipeline_parallel_stages=2)
|
|
|
|
if my_rank == 0:
|
|
print(model)
|
|
dist.barrier()
|
|
|
|
if my_rank == 1:
|
|
print(model)
|
|
|
|
layer_start = model.layer_start
|
|
layer_end = model.layer_end
|
|
num_layers = model.num_layers
|
|
num_heads = model.model.layers[layer_start].self_attn.num_heads
|
|
num_key_value_heads = model.model.layers[layer_start].self_attn.num_key_value_heads
|
|
head_dim = model.model.layers[layer_start].self_attn.head_dim
|
|
rms_norm_eps = model.config.rms_norm_eps
|
|
intermediate_size = model.config.intermediate_size
|
|
deocderlayers = []
|
|
layer_weights = []
|
|
input_layer_norm_weights = []
|
|
post_attn_layernorm_weights = []
|
|
layer_indexs = range(layer_start, layer_end)
|
|
for layer_idx in layer_indexs:
|
|
curr_layer = model.model.layers[layer_idx]
|
|
attn_layer = curr_layer.self_attn
|
|
mlp_layer = curr_layer.mlp
|
|
|
|
weights = [
|
|
(attn_layer.q_proj.weight, attn_layer.q_proj.scale),
|
|
(attn_layer.k_proj.weight, attn_layer.k_proj.scale),
|
|
(attn_layer.v_proj.weight, attn_layer.v_proj.scale),
|
|
(attn_layer.o_proj.weight, attn_layer.o_proj.scale),
|
|
(mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
|
|
(mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
|
|
(mlp_layer.down_proj.weight, mlp_layer.down_proj.scale)]
|
|
|
|
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
|
|
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
|
|
|
|
layer_norm_0 = curr_layer.input_layernorm.weight.to(torch.float16)
|
|
layer_norm_1 = curr_layer.post_attention_layernorm.weight.to(torch.float16)
|
|
|
|
new_decoderlayer = FusedLlamaLowBitDecoderlayer(weights,
|
|
num_heads=num_heads,
|
|
num_key_value_heads=num_key_value_heads,
|
|
cached_cos=cached_cos,
|
|
cached_sin=cached_sin,
|
|
layer_norm_0=layer_norm_0,
|
|
layer_norm_1=layer_norm_1,
|
|
layer_idx=layer_idx,
|
|
rms_norm_eps=rms_norm_eps,
|
|
intermediate_size=intermediate_size,
|
|
max_seq_len=args.max_seq_len,
|
|
transpose_value=args.transpose_value_cache)
|
|
|
|
layer_weights.extend(weights)
|
|
input_layer_norm_weights.append(layer_norm_0)
|
|
post_attn_layernorm_weights.append(layer_norm_1)
|
|
model.model.layers[layer_idx] = new_decoderlayer
|
|
|
|
multi_decoder = FusedLlamaLowBitMultiDecoderlayer(
|
|
parameters=layer_weights,
|
|
input_laynorm_weights=input_layer_norm_weights,
|
|
post_attn_layernorm_weights=post_attn_layernorm_weights,
|
|
layer_indexes=layer_indexs,
|
|
cached_cos=cached_cos,
|
|
cached_sin=cached_sin,
|
|
num_heads=num_heads,
|
|
head_dim=head_dim,
|
|
num_key_value_heads=num_key_value_heads,
|
|
rms_norm_eps=rms_norm_eps,
|
|
intermediate_size=intermediate_size,
|
|
max_seq_len=args.max_seq_len,
|
|
transpose_value=args.transpose_value_cache
|
|
)
|
|
|
|
model.model.multi_decoder = multi_decoder
|
|
print(model)
|
|
|
|
with torch.inference_mode():
|
|
input_ids = tokenizer.encode(args.prompt, return_tensors="pt")
|
|
print("finish to load")
|
|
print('input length:', len(input_ids[0]))
|
|
for i in range(3):
|
|
st = time.time()
|
|
output = model.generate(input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict)
|
|
end = time.time()
|
|
if my_rank == 0:
|
|
print(f"First token cost: {model.first_token_time} s, rest tokens cost average: {model.rest_cost_mean} s")
|
|
print(f'Inference time: {end-st} s')
|
|
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
|
print('-'*20, 'Prompt', '-'*20)
|
|
print(args.prompt)
|
|
print('-'*20, 'Output', '-'*20)
|
|
print(output_str)
|