* Add qwen2-vl example * complete generate.py & readme * improve lint style * update 1-6 * update main readme * Format and other small fixes --------- Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
126 lines
4.9 KiB
Python
126 lines
4.9 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import torch
|
|
import time
|
|
import argparse
|
|
import numpy as np
|
|
|
|
from ipex_llm.transformers import Qwen2VLForConditionalGeneration
|
|
from qwen_vl_utils import process_vision_info
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Qwen2-VL model')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2-VL-7B-Instruct",
|
|
help='The huggingface repo id for the Qwen2-VL model to be downloaded'
|
|
', or the path to the huggingface checkpoint folder')
|
|
parser.add_argument('--prompt', type=str, default="图片里有什么?",
|
|
help='Prompt to infer')
|
|
parser.add_argument('--image-url-or-path', type=str,
|
|
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg' ,
|
|
help='The URL or path to the image to infer')
|
|
|
|
parser.add_argument('--n-predict', type=int, default=32,
|
|
help='Max tokens to predict')
|
|
parser.add_argument('--modelscope', action="store_true", default=False,
|
|
help="Use models from modelscope")
|
|
|
|
args = parser.parse_args()
|
|
if args.modelscope:
|
|
from modelscope import AutoProcessor
|
|
model_hub = 'modelscope'
|
|
else:
|
|
from transformers import AutoProcessor
|
|
model_hub = 'huggingface'
|
|
|
|
model_path = args.repo_id_or_model_path
|
|
|
|
model = Qwen2VLForConditionalGeneration.from_pretrained(model_path,
|
|
load_in_4bit=True,
|
|
optimize_model=True,
|
|
trust_remote_code=True,
|
|
modules_to_not_convert=["vision"],
|
|
use_cache=True,
|
|
model_hub=model_hub)
|
|
|
|
# Use .float() for better output, and use .half() for better speed
|
|
model = model.half().to("xpu")
|
|
|
|
# The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct#quickstart
|
|
|
|
# The default range for the number of visual tokens per image in the model is 4-16384.
|
|
# You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280,
|
|
# to balance speed and memory usage.
|
|
min_pixels = 256*28*28
|
|
max_pixels = 1280*28*28
|
|
processor = AutoProcessor.from_pretrained(model_path, min_pixels=min_pixels, max_pixels=max_pixels)
|
|
|
|
prompt = args.prompt
|
|
image_path = args.image_url_or_path
|
|
|
|
with torch.inference_mode():
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image",
|
|
"image": image_path,
|
|
},
|
|
{"type": "text", "text": prompt},
|
|
],
|
|
}
|
|
]
|
|
text = processor.apply_chat_template(
|
|
messages, tokenize=False, add_generation_prompt=True
|
|
)
|
|
image_inputs, video_inputs = process_vision_info(messages)
|
|
inputs = processor(
|
|
text=[text],
|
|
images=image_inputs,
|
|
videos=video_inputs,
|
|
padding=True,
|
|
return_tensors="pt",
|
|
)
|
|
inputs = inputs.to('xpu')
|
|
|
|
# ipex_llm model needs a warmup, then inference time can be accurate
|
|
generated_ids = model.generate(
|
|
**inputs,
|
|
max_new_tokens=args.n_predict
|
|
)
|
|
|
|
st = time.time()
|
|
generated_ids = model.generate(
|
|
**inputs,
|
|
max_new_tokens=args.n_predict
|
|
)
|
|
torch.xpu.synchronize()
|
|
end = time.time()
|
|
generated_ids = generated_ids.cpu()
|
|
generated_ids = [
|
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
|
|
]
|
|
|
|
response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
print(f'Inference time: {end-st} s')
|
|
print('-'*20, 'Input Image', '-'*20)
|
|
print(image_path)
|
|
print('-'*20, 'Prompt', '-'*20)
|
|
print(prompt)
|
|
print('-'*20, 'Output', '-'*20)
|
|
print(response)
|