* Add example for Janus-Pro * Update model link * Fixes * Fixes --------- Co-authored-by: ATMxsp01 <shou.xu@intel.com> Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
130 lines
4.8 KiB
Python
130 lines
4.8 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import os
|
|
import time
|
|
import torch
|
|
import argparse
|
|
from ipex_llm.transformers import AutoModelForCausalLM
|
|
from janus.models import VLChatProcessor
|
|
from janus.utils.io import load_pil_images
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Janus-Pro model')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="deepseek-ai/Janus-Pro-7B",
|
|
help='The Hugging Face repo id for the Janus-Pro model to be downloaded'
|
|
', or the path to the checkpoint folder')
|
|
parser.add_argument('--image-path', type=str,
|
|
help='The path to the image for inference.')
|
|
parser.add_argument('--prompt', type=str,
|
|
help='Prompt for inference.')
|
|
parser.add_argument('--n-predict', type=int, default=32,
|
|
help='Max tokens to predict')
|
|
parser.add_argument('--low-bit', type=str, default="sym_int4",
|
|
help='Low bit optimizations that will be applied to the model.')
|
|
|
|
args = parser.parse_args()
|
|
|
|
model_path = args.repo_id_or_model_path
|
|
model_name = os.path.basename(model_path)
|
|
prompt = args.prompt
|
|
image_path = args.image_path
|
|
if prompt is None:
|
|
if image_path is not None and os.path.exists(image_path):
|
|
prompt = "Describe the image in detail."
|
|
else:
|
|
prompt = "What is AI?"
|
|
|
|
# The following code is adapted from
|
|
# https://github.com/deepseek-ai/Janus?tab=readme-ov-file#multimodal-understanding
|
|
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
|
|
tokenizer = vl_chat_processor.tokenizer
|
|
|
|
model_vl = AutoModelForCausalLM.from_pretrained(
|
|
model_path,
|
|
load_in_low_bit=args.low_bit,
|
|
optimize_model=True,
|
|
trust_remote_code=True,
|
|
modules_to_not_convert=["vision_model"]
|
|
).eval()
|
|
|
|
model_vl = model_vl.half().to('xpu')
|
|
|
|
if image_path is not None and os.path.exists(image_path):
|
|
conversation = [
|
|
{
|
|
"role": "<|User|>",
|
|
"content": f"<image_placeholder>\n{prompt}",
|
|
"images": [image_path],
|
|
},
|
|
{"role": "<|Assistant|>", "content": ""},
|
|
]
|
|
else:
|
|
conversation = [
|
|
{
|
|
"role": "<|User|>",
|
|
"content": f"{prompt}",
|
|
},
|
|
{"role": "<|Assistant|>", "content": ""},
|
|
]
|
|
|
|
# load images and prepare for inputs
|
|
pil_images = load_pil_images(conversation)
|
|
prepare_inputs = vl_chat_processor(
|
|
conversations=conversation, images=pil_images, force_batchify=True
|
|
)
|
|
|
|
prepare_inputs = prepare_inputs.to(device='xpu', dtype=torch.half)
|
|
|
|
# run image encoder to get the image embeddings
|
|
inputs_embeds = model_vl.prepare_inputs_embeds(**prepare_inputs)
|
|
|
|
with torch.inference_mode():
|
|
# ipex_llm model needs a warmup, then inference time can be accurate
|
|
outputs = model_vl.language_model.generate(
|
|
inputs_embeds=inputs_embeds,
|
|
attention_mask=prepare_inputs.attention_mask,
|
|
pad_token_id=tokenizer.eos_token_id,
|
|
bos_token_id=tokenizer.bos_token_id,
|
|
eos_token_id=tokenizer.eos_token_id,
|
|
max_new_tokens=args.n_predict,
|
|
do_sample=False,
|
|
use_cache=True,
|
|
)
|
|
|
|
st = time.time()
|
|
# run the model to get the response
|
|
outputs = model_vl.language_model.generate(
|
|
inputs_embeds=inputs_embeds,
|
|
attention_mask=prepare_inputs.attention_mask,
|
|
pad_token_id=tokenizer.eos_token_id,
|
|
bos_token_id=tokenizer.bos_token_id,
|
|
eos_token_id=tokenizer.eos_token_id,
|
|
max_new_tokens=args.n_predict,
|
|
do_sample=False,
|
|
use_cache=True,
|
|
)
|
|
ed = time.time()
|
|
|
|
reponse = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
|
|
|
|
print(f'Inference time: {ed-st} s')
|
|
print('-'*20, 'Input Image Path', '-'*20)
|
|
print(image_path)
|
|
print('-'*20, 'Input Prompt (Formatted)', '-'*20)
|
|
print(f"{prepare_inputs['sft_format'][0]}")
|
|
print('-'*20, 'Chat Output', '-'*20)
|
|
print(reponse)
|