ipex-llm/python/llm/example/GPU/HuggingFace/Multimodal/janus-pro/generate.py
Xu, Shuo 1e00bed001
Add GPU example for Janus-Pro (#12869)
* Add example for Janus-Pro

* Update model link

* Fixes

* Fixes

---------

Co-authored-by: ATMxsp01 <shou.xu@intel.com>
Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
2025-02-21 18:36:50 +08:00

130 lines
4.8 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import time
import torch
import argparse
from ipex_llm.transformers import AutoModelForCausalLM
from janus.models import VLChatProcessor
from janus.utils.io import load_pil_images
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Janus-Pro model')
parser.add_argument('--repo-id-or-model-path', type=str, default="deepseek-ai/Janus-Pro-7B",
help='The Hugging Face repo id for the Janus-Pro model to be downloaded'
', or the path to the checkpoint folder')
parser.add_argument('--image-path', type=str,
help='The path to the image for inference.')
parser.add_argument('--prompt', type=str,
help='Prompt for inference.')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--low-bit', type=str, default="sym_int4",
help='Low bit optimizations that will be applied to the model.')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
model_name = os.path.basename(model_path)
prompt = args.prompt
image_path = args.image_path
if prompt is None:
if image_path is not None and os.path.exists(image_path):
prompt = "Describe the image in detail."
else:
prompt = "What is AI?"
# The following code is adapted from
# https://github.com/deepseek-ai/Janus?tab=readme-ov-file#multimodal-understanding
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
model_vl = AutoModelForCausalLM.from_pretrained(
model_path,
load_in_low_bit=args.low_bit,
optimize_model=True,
trust_remote_code=True,
modules_to_not_convert=["vision_model"]
).eval()
model_vl = model_vl.half().to('xpu')
if image_path is not None and os.path.exists(image_path):
conversation = [
{
"role": "<|User|>",
"content": f"<image_placeholder>\n{prompt}",
"images": [image_path],
},
{"role": "<|Assistant|>", "content": ""},
]
else:
conversation = [
{
"role": "<|User|>",
"content": f"{prompt}",
},
{"role": "<|Assistant|>", "content": ""},
]
# load images and prepare for inputs
pil_images = load_pil_images(conversation)
prepare_inputs = vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
)
prepare_inputs = prepare_inputs.to(device='xpu', dtype=torch.half)
# run image encoder to get the image embeddings
inputs_embeds = model_vl.prepare_inputs_embeds(**prepare_inputs)
with torch.inference_mode():
# ipex_llm model needs a warmup, then inference time can be accurate
outputs = model_vl.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=args.n_predict,
do_sample=False,
use_cache=True,
)
st = time.time()
# run the model to get the response
outputs = model_vl.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=args.n_predict,
do_sample=False,
use_cache=True,
)
ed = time.time()
reponse = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
print(f'Inference time: {ed-st} s')
print('-'*20, 'Input Image Path', '-'*20)
print(image_path)
print('-'*20, 'Input Prompt (Formatted)', '-'*20)
print(f"{prepare_inputs['sft_format'][0]}")
print('-'*20, 'Chat Output', '-'*20)
print(reponse)