* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm
		
			
				
	
	
		
			77 lines
		
	
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			77 lines
		
	
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						||
# Copyright 2016 The BigDL Authors.
 | 
						||
#
 | 
						||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						||
# you may not use this file except in compliance with the License.
 | 
						||
# You may obtain a copy of the License at
 | 
						||
#
 | 
						||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						||
#
 | 
						||
# Unless required by applicable law or agreed to in writing, software
 | 
						||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						||
# See the License for the specific language governing permissions and
 | 
						||
# limitations under the License.
 | 
						||
#
 | 
						||
 | 
						||
import torch
 | 
						||
import time
 | 
						||
import argparse
 | 
						||
import numpy as np
 | 
						||
 | 
						||
from transformers import AutoTokenizer
 | 
						||
 | 
						||
 | 
						||
if __name__ == '__main__':
 | 
						||
    parser = argparse.ArgumentParser(description='Qwen1.5-7B-Chat')
 | 
						||
    parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen1.5-7B-Chat",
 | 
						||
                        help='The huggingface repo id for the Qwen1.5 model to be downloaded'
 | 
						||
                             ', or the path to the huggingface checkpoint folder')
 | 
						||
    parser.add_argument('--prompt', type=str, default="AI是什么?",
 | 
						||
                        help='Prompt to infer') 
 | 
						||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						||
                        help='Max tokens to predict')
 | 
						||
 | 
						||
    args = parser.parse_args()
 | 
						||
    model_path = args.repo_id_or_model_path
 | 
						||
 | 
						||
    
 | 
						||
    from ipex_llm.transformers import AutoModelForCausalLM
 | 
						||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
						||
                                                 load_in_4bit=True,
 | 
						||
                                                 trust_remote_code=True)
 | 
						||
 | 
						||
    # Load tokenizer
 | 
						||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
						||
                                              trust_remote_code=True)
 | 
						||
    
 | 
						||
    prompt = args.prompt
 | 
						||
    
 | 
						||
    # Generate predicted tokens
 | 
						||
    with torch.inference_mode():
 | 
						||
        messages = [
 | 
						||
            {"role": "system", "content": "You are a helpful assistant."},
 | 
						||
            {"role": "user", "content": prompt}
 | 
						||
            ]
 | 
						||
        text = tokenizer.apply_chat_template(
 | 
						||
            messages,
 | 
						||
            tokenize=False,
 | 
						||
            add_generation_prompt=True
 | 
						||
            )
 | 
						||
        model_inputs = tokenizer([text], return_tensors="pt")
 | 
						||
        st = time.time()
 | 
						||
        generated_ids = model.generate(
 | 
						||
            model_inputs.input_ids,
 | 
						||
            max_new_tokens=args.n_predict
 | 
						||
            )
 | 
						||
        end = time.time()
 | 
						||
        generated_ids = [
 | 
						||
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
 | 
						||
            ]
 | 
						||
 | 
						||
        response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
 | 
						||
        print(f'Inference time: {end-st} s')
 | 
						||
        print('-'*20, 'Prompt', '-'*20)
 | 
						||
        print(prompt)
 | 
						||
        print('-'*20, 'Output', '-'*20)
 | 
						||
        print(response)
 |