* Update example scripts regarding warmup, stream generate, moudles to not convert, etc. * Update readme accordingly * Fix based on comments * Small fix * Remove n_predict  | 
			||
|---|---|---|
| .. | ||
| chat.py | ||
| README.md | ||
MiniCPM-V-2_6
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-V-2_6 model on Intel GPUs. For illustration purposes, we utilize openbmb/MiniCPM-V-2_6 as reference MiniCPM-V-2_6 model.
0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to here for more information.
Example: Predict Tokens using chat() API
In the example chat.py, we show a basic use case for a MiniCPM-V-2_6 model to predict the next N tokens using chat() API, with IPEX-LLM INT4 optimizations on Intel GPUs.
1. Install
1.1 Installation on Linux
We suggest using conda to manage environment:
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install transformers==4.40.0 trl
1.2 Installation on Windows
We suggest using conda to manage environment:
conda create -n llm python=3.11 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install transformers==4.40.0 trl
2. Configures OneAPI environment variables for Linux
Note
Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
source /opt/intel/oneapi/setvars.sh
3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
3.1 Configurations for Linux
For Intel Arcâ„¢ A-Series Graphics and Intel Data Center GPU Flex Series
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
For Intel Data Center GPU Max Series
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
Note: Please note that
libtcmalloc.socan be installed byconda install -c conda-forge -y gperftools=2.10.
For Intel iGPU
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
3.2 Configurations for Windows
For Intel iGPU
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
For Intel Arcâ„¢ A-Series Graphics
set SYCL_CACHE_PERSISTENT=1
Note
For the first time that each model runs on Intel iGPU/Intel Arcâ„¢ A300-Series or Pro A60, it may take several minutes to compile.
4. Running examples
- chat without streaming mode:
python ./generate.py --prompt 'What is in the image?' - chat in streaming mode:
python ./generate.py --prompt 'What is in the image?' --stream 
Tip
For chatting in streaming mode, it is recommended to set the environment variable
PYTHONUNBUFFERED=1.
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the huggingface repo id for the MiniCPM-V-2_6 (e.g.openbmb/MiniCPM-V-2_6) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'openbmb/MiniCPM-V-2_6'.--image-url-or-path IMAGE_URL_OR_PATH: argument defining the image to be infered. It is default to be'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'.--prompt PROMPT: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be'What is in the image?'.--stream: flag to chat in streaming mode
Sample Output
openbmb/MiniCPM-V-2_6
Inference time: xxxx s
-------------------- Input Image --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Input Prompt --------------------
What is in the image?
-------------------- Chat Output --------------------
The image features a young child holding a white teddy bear wearing a pink dress. The background shows some red flowers and stone walls, suggesting an outdoor setting.
-------------------- Input Image --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Input Prompt --------------------
图片里有什么?
-------------------- Stream Chat Output --------------------
å›¾ç‰‡ä¸æœ‰ä¸€ä¸ªç©¿ç<C2BF>€ç²‰çº¢è‰²è¿žè¡£è£™çš„å°<C3A5>å©ï¼Œæ‰‹é‡Œæ‹¿ç<C2BF>€ä¸€å<E282AC>ªç©¿ç<C2BF>€ç²‰è‰²èŠè•¾è£™çš„ç™½è‰²æ³°è¿ªç†Šã€‚èƒŒæ™¯ä¸æœ‰çº¢è‰²èŠ±æœµå’ŒçŸ³å¤´å¢™ï¼Œè¡¨æ˜Žç…§ç‰‡å<E280A1>¯èƒ½æ˜¯åœ¨æˆ·å¤–æ‹<C3A6>摄的。
The sample input image is (which is fetched from COCO dataset):
