* ut * transformers api first ut * name * dir issue * use chatglm instead of chatglm2 * omp * set omp in sh * source * taskset * test * test omp * add test
55 lines
1.9 KiB
Python
55 lines
1.9 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
|
|
from bigdl.llm.models import Llama, Bloom, Gptneox, Starcoder
|
|
from bigdl.llm.utils import get_avx_flags
|
|
import unittest
|
|
import os
|
|
|
|
import time
|
|
import torch
|
|
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel
|
|
from transformers import LlamaTokenizer, AutoTokenizer
|
|
|
|
class TestTransformersAPI(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
thread_num = os.environ.get('THREAD_NUM')
|
|
if thread_num is not None:
|
|
self.n_threads = int(thread_num)
|
|
else:
|
|
self.n_threads = 2
|
|
|
|
def test_transformers_int4(self):
|
|
model_path = os.environ.get('ORIGINAL_CHATGLM_6B_PATH')
|
|
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
input_str = "晚上睡不着应该怎么办"
|
|
|
|
with torch.inference_mode():
|
|
st = time.time()
|
|
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
|
output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
|
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
end = time.time()
|
|
print('Prompt:', input_str)
|
|
print('Output:', output_str)
|
|
print(f'Inference time: {end-st} s')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|