ipex-llm/python/llm/example/GPU/Pipeline-Parallel-FastAPI/pipeline_models.py
Xiangyu Tian 8ddae22cfb
LLM: Refactor Pipeline-Parallel-FastAPI example (#11319)
Initially Refactor for Pipeline-Parallel-FastAPI example
2024-06-25 13:30:36 +08:00

382 lines
16 KiB
Python

import torch
import torch.distributed as dist
from typing import List, Optional, Tuple, Union, Iterator
import time
from transformers.cache_utils import Cache
from transformers.utils import logging
import numpy as np
import asyncio, uuid
import threading
from pydantic import BaseModel
logger = logging.get_logger(__name__)
class PPConfig:
"""Configuration for ModelSlices."""
def __init__(self, pp_rank: int, pp_world_size: int) -> None:
self.pp_rank = pp_rank
self.pp_world_size = pp_world_size
self.is_head = self.pp_rank == 0
self.is_tail = self.pp_rank == self.pp_world_size - 1
class BatchTask(BaseModel):
batch_id: str
request_ids: List[str]
max_tokens: int
batch_size: int
input_len: int
prompt_lengths: List[int]
stopped: bool
def make_attention_mask(prompt_lengths):
max_length = max(prompt_lengths)
attention_mask = torch.zeros((len(prompt_lengths), max_length), dtype=torch.int64)
for i, length in enumerate(prompt_lengths):
attention_mask[i, max_length - length:] = 1
return attention_mask
class ModelRunner:
def __init__(self, checkpoint, rank, world_size, low_bit, max_num_seqs):
self.pp_config = PPConfig(rank, world_size)
start = time.perf_counter()
model = self.load_model(checkpoint, rank, world_size, low_bit)
end = time.perf_counter()
logger.info(f"Time to load weights: {end - start:.2f}s")
self.model = model
self.rank = rank
self.world_size = world_size
self.pre_rank = (self.rank - 1) % self.world_size
self.next_rank = (self.rank + 1) % self.world_size
self.hidden_size = self.model.config.hidden_size
self.max_num_seqs = max_num_seqs
self.on_going_batches = [None] * self.world_size
self.input_ids_dict = {}
# self.attention_mask_dict = {}
self.past_key_values_dict = {}
self.tokens = {}
self.token_times = {}
self.dtype = torch.float16
self.waiting_requests = asyncio.Queue()
self.send_buff = None
self.dict_lock = threading.Lock()
self.streamer = {}
self.token_cache = {}
self.print_len = {}
self.is_finish = {}
self.model_name = checkpoint
self.layer_start = 0
def load_model(self, model_path, my_rank, my_size, low_bit='sym_int4'):
device = f"xpu:{my_rank}"
from ipex_llm.transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_low_bit=low_bit,
torch_dtype=torch.float16,
optimize_model=True,
trust_remote_code=True,
use_cache=True,
pipeline_parallel_stages=my_size).eval()
# print(model)
# config_class = type(model.config).__name__
# if config_class == 'ChatGLMConfig':
# model.config.num_hidden_layers = model.config.num_layers
# nr_slices = my_size
# slice_size = (model.config.num_layers + nr_slices - 1) // nr_slices
# layer_start = slice_size * my_rank
# layer_end = layer_start + min(slice_size, model.config.num_layers - layer_start)
# for i in range(model.config.num_layers):
# if i < layer_start or i >= layer_end:
# model.transformer.encoder.layers[i] = Dummy_DecoderLayer()
# else:
# pass
# # align layer_idx and len(past_key_values), otherwise abnormal output
# # model._modules['encoder'].layers[i].self_attention.layer_idx = i - layer_start
# # model.transformer.encoder.layers[i].self_attention.layer_idx = i - layer_start
# if my_rank != 0:
# model.transformer.embedding = DummyLayer()
# if my_rank != my_size - 1:
# model.transformer.output_layer = DummyLayer()
# else:
# nr_slices = my_size
# slice_size = (model.config.num_hidden_layers + nr_slices - 1) // nr_slices
# layer_start = slice_size * my_rank
# layer_end = layer_start + min(slice_size, model.config.num_hidden_layers - layer_start)
# for i in range(model.config.num_hidden_layers):
# if i < layer_start or i >= layer_end:
# model._modules['model'].layers[i] = Dummy_DecoderLayer()
# else:
# # align layer_idx and len(past_key_values), otherwise abnormal output
# model._modules['model'].layers[i].self_attn.layer_idx = i - layer_start
# if my_rank != 0:
# model._modules['model'].embed_tokens = DummyLayer()
# if my_rank != my_size - 1:
# model._modules['model'].norm = DummyLayer()
# model._modules['lm_head'] = DummyLayer()
# model = model.to(f'xpu:{my_rank}')
return model
def model_step(self, input, cur_batch):
if cur_batch is None or cur_batch.stopped or input is None:
return None
cur_id = cur_batch.batch_id
_past_key_values = self.past_key_values_dict.get(cur_id, None)
attention_mask = make_attention_mask(cur_batch.prompt_lengths)
if self.rank == 0:
input_ids = input
inputs_embeds = None
else:
input_ids = None
inputs_embeds = input
# logger.info(f"{self.rank}, {_past_key_values}")
output = self.model(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
past_key_values=_past_key_values,
use_cache=True,
output_hidden_states=True,
)
use_legacy_cache = not isinstance(output.past_key_values, Cache)
if use_legacy_cache and self.rank > 0:
if output.past_key_values[0] is None:
_past_key_values = list(output.past_key_values)
slice_size = (self.model.config.num_hidden_layers + self.world_size - 1) // self.world_size
layer_start = slice_size * self.rank
_past_key_values[0] = [torch.empty_like(output.past_key_values[layer_start][0])]
_past_key_values = tuple(_past_key_values)
else:
_past_key_values = output.past_key_values
else:
_past_key_values = output.past_key_values
self.past_key_values_dict[cur_id] = _past_key_values
if not self.pp_config.is_tail:
return output.hidden_states[-1]
else:
return output.logits
def is_initialized(self):
return True
async def add_request(self, tokenizer):
request_ids, prompt_requests = [], []
for _ in range(self.max_num_seqs):
if self.waiting_requests.empty():
break
tmp_result = await self.waiting_requests.get()
request_id, prompt_request = tmp_result
request_ids.append(request_id)
prompt_requests.append(prompt_request)
plain_texts = [req.prompt for req in prompt_requests]
inputs = tokenizer(plain_texts, return_tensors="pt", padding=True)
input_ids = inputs.input_ids.to(f'xpu:{self.rank}')
attention_mask = inputs.attention_mask.to(f'xpu:{self.rank}')
new_batch = BatchTask(
batch_id="batch_" + str(uuid.uuid4()),
request_ids=request_ids,
max_tokens=max([req.n_predict for req in prompt_requests]),
batch_size=input_ids.size(0),
input_len=input_ids.size(1),
prompt_lengths=[sum(attention_mask[i,:]) for i in range(input_ids.size(0))],
stopped=False,
)
self.input_ids_dict[new_batch.batch_id] = input_ids
self.token_times[new_batch.batch_id] = [time.perf_counter()]
return new_batch
def clear_batch(self, cur_id):
self.input_ids_dict.pop(cur_id, None)
self.tokens.pop(cur_id, None)
self.token_times.pop(cur_id, None)
self.past_key_values_dict.pop(cur_id, None)
# torch.xpu.empty_cache()
async def process_step(self, tokenizer, result_dict):
cur_batch = None
if self.rank == 0:
if self.send_buff is not None:
# logger.info(f"rank: {self.rank}, send: {self.send_buff.shape}")
dist.send(self.send_buff, dst=self.next_rank)
if self.on_going_batches[0] is not None:
cur_batch = self.on_going_batches[0]
cur_input = None
if cur_batch is None:
if not self.waiting_requests.empty():
await asyncio.sleep(0.01)
cur_batch = await self.add_request(tokenizer)
cur_input = self.input_ids_dict[cur_batch.batch_id]
else:
cur_batch = None
cur_input = None
if (cur_batch is not None) and (not cur_batch.stopped) and (cur_input is None):
cur_id = cur_batch.batch_id
next_ids = torch.empty((cur_batch.batch_size, 1,), device=f'xpu:{self.rank}', dtype=torch.int64)
# logger.info(f"rank: {self.rank}, recv: {next_ids.shape}")
dist.recv(next_ids, src=self.pre_rank)
if self.tokens.get(cur_id, None) is None:
self.tokens[cur_id] = []
if len(next_ids.shape) == 1:
next_ids = next_ids.unsqueeze(0)
self.tokens[cur_id].append(next_ids)
self.token_times[cur_id].append(time.perf_counter())
cur_input = next_ids
cur_batch.input_len = 1
cur_batch.prompt_lengths = [x + 1 for x in cur_batch.prompt_lengths]
for index, request_id in enumerate(cur_batch.request_ids):
if not self.is_finish.get(request_id, False):
remain = cur_batch.max_tokens - len(self.tokens[cur_id])
if self.streamer.get(request_id, None) is None:
self.streamer[request_id] = asyncio.Queue()
# Currently ignore eos for benchmark
# if next_ids[index].int() == tokenizer.eos_token_id:
# remain = 0
# self.is_finish[request_id] = True
if self.token_cache.get(request_id, None) is None:
self.token_cache[request_id] = []
self.print_len[request_id] = 0
self.token_cache[request_id].extend(next_ids[index].tolist())
text = tokenizer.decode(self.token_cache[request_id])
if text.endswith("\n"):
printable_text = text[self.print_len[request_id]:]
self.token_cache[request_id] = []
self.print_len[request_id] = 0
elif len(text) > 0 and _is_chinese_char(ord(text[-1])):
printable_text = text[self.print_len[request_id]:]
self.print_len[request_id] += len(printable_text)
else:
printable_text = text[self.print_len[request_id] : text.rfind(" ") + 1]
self.print_len[request_id] += len(printable_text)
if remain > 0:
await self.streamer[request_id].put((remain, printable_text))
else:
printable_text = printable_text + text[self.print_len[request_id]:]
self.token_cache.pop(request_id, None)
self.print_len.pop(request_id, None)
await self.streamer[request_id].put((remain, printable_text))
if len(self.tokens[cur_id]) >= cur_batch.max_tokens:
# Finish a batch
# logger.info(self.tokens[cur_id])
outputs = torch.cat(self.tokens[cur_id], dim=1)
outputs = outputs.cpu()
output_strs = tokenizer.batch_decode(outputs, skip_special_tokens=False)
for request_id, output_str in zip(cur_batch.request_ids, output_strs):
with self.dict_lock:
result_dict[request_id] = output_str
cur_times = self.token_times[cur_id]
first_token = cur_times[1] - cur_times[0]
next_token = (cur_times[-1] - cur_times[1]) / (len(self.tokens[cur_id]) - 1)
logger.info(f"First token latency: {first_token}, next token latency: {next_token}")
self.clear_batch(cur_id)
cur_batch.stopped = True
else:
if (cur_batch is not None) and cur_batch.stopped:
cur_batch = None
if cur_batch is not None:
dist.broadcast_object_list([cur_batch], src=0)
else:
if self.send_buff is not None:
# logger.info(f"rank: {self.rank}, send: {self.send_buff.shape}")
dist.send(self.send_buff, dst=self.next_rank)
batch_list = [None]
dist.broadcast_object_list(batch_list, src=0)
cur_batch = batch_list[0]
cur_input = None
if cur_batch is not None:
if cur_batch.stopped:
self.clear_batch(cur_batch.batch_id)
else:
cur_len = cur_batch.input_len
cur_input = torch.empty((cur_batch.batch_size, cur_len, self.hidden_size,), device=f'xpu:{self.rank}', dtype=self.dtype)
# logger.info(f"rank: {self.rank}, recv: {cur_input.shape}")
dist.recv(cur_input, src=self.pre_rank)
output = self.model_step(cur_input, cur_batch)
if output is not None and self.rank == self.world_size - 1:
output = torch.argmax(output[:, -1:, :], dim=-1)
if output is not None:
# dist.send(output, dst=self.next_rank)
self.send_buff = output
else:
self.send_buff = None
if self.rank == 0:
self.on_going_batches[:-1] = self.on_going_batches[1:]
self.on_going_batches[self.world_size - 1] = cur_batch
def _is_chinese_char(cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False