* Remove model with optimize_model=False in NPU verified models tables, and remove related example * Remove experimental in run optimized model section title * Unify model table order & example cmd * Move embedding example to separate folder & update quickstart example link * Add Quickstart reference in main NPU readme * Small fix * Small fix * Move save/load examples under NPU/HF-Transformers-AutoModels * Add low-bit and polish arguments for LLM Python examples * Small fix * Add low-bit and polish arguments for Multi-Model examples * Polish argument for Embedding models * Polish argument for LLM CPP examples * Add low-bit and polish argument for Save-Load examples * Add accuracy tuning tips for examples * Update NPU qucikstart accuracy tuning with low-bit optimizations * Add save/load section to qucikstart * Update CPP example sample output to EN * Add installation regarding cmake for CPP examples * Small fix * Small fix * Small fix * Small fix * Small fix * Small fix * Unify max prompt length to 512 * Change recommended low-bit for Qwen2.5-3B-Instruct to asym_int4 * Update based on comments * Small fix
		
			
				
	
	
		
			72 lines
		
	
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			72 lines
		
	
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
import os
 | 
						|
import time
 | 
						|
import torch
 | 
						|
import argparse
 | 
						|
from ipex_llm.transformers.npu_model import EmbeddingModel
 | 
						|
from transformers.utils import logging
 | 
						|
 | 
						|
logger = logging.get_logger(__name__)
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    parser = argparse.ArgumentParser(
 | 
						|
        description="Predict Tokens using `generate()` API for npu model"
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--repo-id-or-model-path",
 | 
						|
        type=str,
 | 
						|
        default="maidalun1020/bce-embedding-base_v1",
 | 
						|
        help="The huggingface repo id for the bce-embedding model to be downloaded"
 | 
						|
        ", or the path to the huggingface checkpoint folder.",
 | 
						|
    )
 | 
						|
    parser.add_argument('--prompt', type=str, default="'sentence_0', 'sentence_1'",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument("--max-context-len", type=int, default=1024)
 | 
						|
    parser.add_argument("--max-prompt-len", type=int, default=512)
 | 
						|
    parser.add_argument("--save-directory", type=str,
 | 
						|
        required=True,
 | 
						|
        help="The path of folder to save converted model, "
 | 
						|
             "If path not exists, lowbit model will be saved there. "
 | 
						|
             "Else, lowbit model will be loaded.",
 | 
						|
    )
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
 | 
						|
    model = EmbeddingModel(
 | 
						|
        model_path,
 | 
						|
        torch_dtype=torch.float16,
 | 
						|
        trust_remote_code=True,
 | 
						|
        attn_implementation="eager",
 | 
						|
        optimize_model=True,
 | 
						|
        max_context_len=args.max_context_len,
 | 
						|
        max_prompt_len=args.max_prompt_len,
 | 
						|
        save_directory=args.save_directory
 | 
						|
    )
 | 
						|
 | 
						|
    # list of sentences
 | 
						|
    split_items = args.prompt.split(',')
 | 
						|
    sentences = [item.strip().strip("'") for item in split_items]
 | 
						|
 | 
						|
    # extract embeddings
 | 
						|
    st = time.time()
 | 
						|
    embeddings = model.encode(sentences)
 | 
						|
    end = time.time()
 | 
						|
    print(f'Inference time: {end-st} s')
 | 
						|
    print(embeddings)
 |