* first commit * update example * fix style * update example * embedding as const * fix generate * code refactor * meet code review * fix style * change max_output_len to max_context_len * fix all-in-one * fix example * add check for new tokens
		
			
				
	
	
		
			104 lines
		
	
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			104 lines
		
	
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import os
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import argparse
 | 
						|
 | 
						|
from ipex_llm.transformers.npu_model import AutoModel, AutoModelForCausalLM
 | 
						|
from transformers import AutoTokenizer
 | 
						|
from transformers.utils import logging
 | 
						|
 | 
						|
import requests
 | 
						|
from PIL import Image
 | 
						|
 | 
						|
logger = logging.get_logger(__name__)
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    parser = argparse.ArgumentParser(
 | 
						|
        description="Predict Tokens using `chat()` API for npu model"
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--repo-id-or-model-path",
 | 
						|
        type=str,
 | 
						|
        default="openbmb/MiniCPM-Llama3-V-2_5",
 | 
						|
        help="The huggingface repo id for the MiniCPM-Llama3-V-2_5 model to be downloaded"
 | 
						|
        ", or the path to the huggingface checkpoint folder",
 | 
						|
    )
 | 
						|
    parser.add_argument('--image-url-or-path', type=str,
 | 
						|
                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
 | 
						|
                        help='The URL or path to the image to infer')
 | 
						|
    parser.add_argument('--prompt', type=str, default="What is in the image?",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
 | 
						|
    parser.add_argument("--max-context-len", type=int, default=1024)
 | 
						|
    parser.add_argument("--max-prompt-len", type=int, default=512)
 | 
						|
    parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
 | 
						|
    parser.add_argument("--intra-pp", type=int, default=2)
 | 
						|
    parser.add_argument("--inter-pp", type=int, default=2)
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(
 | 
						|
        model_path,
 | 
						|
        torch_dtype=torch.float32,
 | 
						|
        trust_remote_code=True,
 | 
						|
        attn_implementation="eager",
 | 
						|
        load_in_low_bit="sym_int4",
 | 
						|
        optimize_model=True,
 | 
						|
        max_context_len=args.max_context_len,
 | 
						|
        max_prompt_len=args.max_prompt_len,
 | 
						|
        intra_pp=args.intra_pp,
 | 
						|
        inter_pp=args.inter_pp,
 | 
						|
        transpose_value_cache=not args.disable_transpose_value_cache,
 | 
						|
        modules_to_not_convert=['vpm', 'resampler']
 | 
						|
    )
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
 | 
						|
    print("-" * 80)
 | 
						|
    print("done")
 | 
						|
 | 
						|
    msgs = [{'role': 'user', 'content': args.prompt}]
 | 
						|
    image_path = args.image_url_or_path
 | 
						|
    if os.path.exists(image_path):
 | 
						|
       image = Image.open(image_path).convert('RGB')
 | 
						|
    else:
 | 
						|
       image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
 | 
						|
 | 
						|
    st = time.time()
 | 
						|
    res = model.chat(
 | 
						|
        image=image,
 | 
						|
        msgs=msgs,
 | 
						|
        tokenizer=tokenizer,
 | 
						|
        sampling=True,
 | 
						|
        temperature=0.7,
 | 
						|
        # system_prompt='' # pass system_prompt if needed
 | 
						|
        )
 | 
						|
    end = time.time()
 | 
						|
 | 
						|
    print(f'Inference time: {end-st} s')
 | 
						|
    print('-'*20, 'Input', '-'*20)
 | 
						|
    print(image_path)
 | 
						|
    print('-'*20, 'Prompt', '-'*20)
 | 
						|
    print(args.prompt)
 | 
						|
    output_str = res
 | 
						|
    print('-'*20, 'Output', '-'*20)
 | 
						|
    print(output_str)
 | 
						|
 | 
						|
    print("done")
 | 
						|
    print("success shut down")
 |