* Add init example for omni mode * Small fix * Small fix * Add chat example * Remove lagecy link * Further update link * Add readme * Small fix * Update main readme link * Update based on comments * Small fix * Small fix * Small fix
119 lines
4.4 KiB
Python
119 lines
4.4 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import os
|
|
import time
|
|
import torch
|
|
import librosa
|
|
import argparse
|
|
from PIL import Image
|
|
from transformers import AutoTokenizer
|
|
from ipex_llm.transformers import AutoModel
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Chat with MiniCPM-o-2_6 with text/audio/image')
|
|
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-o-2_6",
|
|
help='The Hugging Face or ModelScope repo id for the MiniCPM-o-2_6 model to be downloaded'
|
|
', or the path to the checkpoint folder')
|
|
parser.add_argument('--image-path', type=str,
|
|
help='The path to the image for inference.')
|
|
parser.add_argument('--audio-path', type=str,
|
|
help='The path to the audio for inference.')
|
|
parser.add_argument('--prompt', type=str,
|
|
help='Prompt for inference.')
|
|
parser.add_argument('--n-predict', type=int, default=32,
|
|
help='Max tokens to predict')
|
|
|
|
args = parser.parse_args()
|
|
|
|
model_path = args.repo_id_or_model_path
|
|
image_path = args.image_path
|
|
audio_path = args.audio_path
|
|
|
|
modules_to_not_convert = []
|
|
init_vision = False
|
|
init_audio = False
|
|
if image_path is not None and os.path.exists(image_path):
|
|
init_vision = True
|
|
modules_to_not_convert += ["vpm", "resampler"]
|
|
if audio_path is not None and os.path.exists(audio_path):
|
|
init_audio = True
|
|
modules_to_not_convert += ["apm"]
|
|
|
|
# Load model in 4 bit,
|
|
# which convert the relevant layers in the model into INT4 format
|
|
model = AutoModel.from_pretrained(model_path,
|
|
load_in_low_bit="sym_int4",
|
|
optimize_model=True,
|
|
trust_remote_code=True,
|
|
attn_implementation='sdpa',
|
|
use_cache=True,
|
|
init_vision=init_vision,
|
|
init_audio=init_audio,
|
|
init_tts=False,
|
|
modules_to_not_convert=modules_to_not_convert)
|
|
|
|
model = model.half().to('xpu')
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
|
trust_remote_code=True)
|
|
|
|
|
|
# The following code for generation is adapted from
|
|
# https://huggingface.co/openbmb/MiniCPM-o-2_6#addressing-various-audio-understanding-tasks and
|
|
# https://huggingface.co/openbmb/MiniCPM-o-2_6#chat-with-single-image
|
|
content = []
|
|
if init_vision:
|
|
image_input = Image.open(image_path).convert('RGB')
|
|
content.append(image_input)
|
|
if args.prompt is not None:
|
|
content.append(args.prompt)
|
|
if init_audio:
|
|
audio_input, _ = librosa.load(audio_path, sr=16000, mono=True)
|
|
content.append(audio_input)
|
|
messages = [{'role': 'user', 'content': content}]
|
|
|
|
|
|
with torch.inference_mode():
|
|
# ipex_llm model needs a warmup, then inference time can be accurate
|
|
model.chat(
|
|
msgs=messages,
|
|
tokenizer=tokenizer,
|
|
sampling=True,
|
|
max_new_tokens=args.n_predict,
|
|
)
|
|
|
|
st = time.time()
|
|
response = model.chat(
|
|
msgs=messages,
|
|
tokenizer=tokenizer,
|
|
sampling=True,
|
|
max_new_tokens=args.n_predict,
|
|
)
|
|
torch.xpu.synchronize()
|
|
end = time.time()
|
|
|
|
print(f'Inference time: {end-st} s')
|
|
print('-'*20, 'Input Image Path', '-'*20)
|
|
print(image_path)
|
|
print('-'*20, 'Input Audio Path', '-'*20)
|
|
print(audio_path)
|
|
print('-'*20, 'Input Prompt', '-'*20)
|
|
print(args.prompt)
|
|
print('-'*20, 'Chat Output', '-'*20)
|
|
print(response)
|
|
|