ipex-llm/python/llm/dev/benchmark/perplexity/run_longbench.py
RyuKosei 3b630fb9df
updated ppl README (#11807)
* edit README.md

* update the branch

* edited README.md

* updated

* updated description

---------

Co-authored-by: jenniew <jenniewang123@gmail.com>
2024-08-16 15:49:25 +08:00

113 lines
No EOL
4.4 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file is adapted from
# https://github.com/insuhan/hyper-attn/blob/main/benchmark_patch_llm.py
#
import argparse
from tqdm import tqdm
import torch
from datasets import concatenate_datasets, load_dataset
from transformers import AutoTokenizer
from ppl import BigDLPPL
from ipex_llm.ggml.quantize import ggml_tensor_qtype
import os
import json
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--seq_len", type=int, default=512)
parser.add_argument("--model_path", required=True, type=str)
parser.add_argument("--datasets", required=False, type=str, default=None, nargs='*')
parser.add_argument("--dataset_path", required=False, type=str, default=None)
parser.add_argument("--language", required=False, type=str, default="en", choices=['en', 'zh', 'all'])
parser.add_argument("--precisions", required=False, type=str, default=None, nargs='+')
parser.add_argument("--device", type=str, default="xpu")
parser.add_argument("--output_path", default=None)
return parser.parse_args()
@torch.no_grad()
def main():
args = get_arguments()
for arg_name, arg_var in args.__dict__.items():
print(f"{arg_name:<16} : {arg_var}")
tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
tokenizer.model_max_length = args.seq_len
en_datasets = ["narrativeqa", "qasper", "multifieldqa_en", "hotpotqa", "2wikimqa", "musique", "gov_report",
"qmsum", "multi_news", "trec", "triviaqa", "samsum", "passage_count", "passage_retrieval_en"]
zh_datasets = ["multifieldqa_zh", "dureader", "vcsum", "lsht", "passage_retrieval_zh"]
if args.datasets is None:
if args.language == 'en':
datasets = en_datasets
elif args.language == 'zh':
datasets = zh_datasets
else:
datasets = en_datasets + zh_datasets
else:
datasets = args.datasets
dataset_all = []
for dataset_name in datasets:
data_ = load_dataset(os.path.join(args.dataset_path, dataset_name), split='test') if args.dataset_path \
else load_dataset('THUDM/LongBench', f'{dataset_name}', split='test')
dataset_all.append(data_)
data = concatenate_datasets(dataset_all)
encoded_texts = []
pbar = tqdm(data)
for i, data_i in enumerate(pbar):
encoded_text = tokenizer.encode(data_i['context'], return_tensors='pt', truncation=True)
pbar.set_description(f"seq_len: {len(encoded_text[0])}, n_data: {len(encoded_texts)}")
if len(encoded_text[0]) < args.seq_len:
continue
encoded_texts.append(encoded_text)
summary = {}
output_path = args.output_path if args.output_path else "results"
model_name = os.path.basename(os.path.realpath(args.model_path))
for precision in args.precisions:
model_kwargs = {}
if precision in ggml_tensor_qtype.keys():
model_kwargs['load_in_low_bit'] = precision
else:
model_kwargs['torch_dtype'] = getattr(torch, precision)
print(model_kwargs)
log_dir = f"{output_path}/{model_name}/{args.device}/{precision}/{args.language}"
os.makedirs(log_dir, exist_ok=True)
results = {}
ppl_evaluator = BigDLPPL(model_path=args.model_path, device=args.device, **model_kwargs)
ppl = ppl_evaluator.perplexity_hf(encoded_texts)
summary[precision] = ppl
results['results'] = ppl
results['config'] = {"model": model_name, "precision": precision, "device": args.device, "seq_len": args.seq_len, "language": args.language}
dumped = json.dumps(results, indent=2)
print(dumped)
if output_path:
with open(f"{log_dir}/result.json", "w") as f:
f.write(dumped)
print(summary)
if __name__ == "__main__":
main()