* deprecate BigDLNativeTransformers and add specific LMEmbedding method * deprecate and add LM methods for langchain llms * add native params to native langchain * new imple for embedding * move ut from bigdlnative to casual llm * rename embeddings api and examples update align with usage updating * docqa example hot-fix * add more api docs * add langchain ut for starcoder * support model_kwargs for transformer methods when calling causalLM and add ut * ut fix for transformers embedding * update for langchain causal supporting transformers * remove model_family in readme doc * add model_families params to support more models * update api docs and remove chatglm embeddings for now * remove chatglm embeddings in examples * new refactor for ut to add bloom and transformers llama ut * disable llama transformers embedding ut
140 lines
4.9 KiB
Python
140 lines
4.9 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
# This would makes sure Python is aware there is more than one sub-package within bigdl,
|
|
# physically located elsewhere.
|
|
# Otherwise there would be module not found error in non-pip's setting as Python would
|
|
# only search the first bigdl package and end up finding only one sub-package.
|
|
|
|
# Code adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant
|
|
|
|
|
|
from langchain import LLMChain, PromptTemplate
|
|
from bigdl.llm.langchain.llms import *
|
|
from langchain.memory import ConversationBufferWindowMemory
|
|
from langchain.callbacks.manager import CallbackManager
|
|
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
|
import speech_recognition as sr
|
|
import pyttsx3
|
|
import argparse
|
|
|
|
|
|
def prepare_chain(args):
|
|
|
|
model_path = args.model_path
|
|
n_threads = args.thread_num
|
|
n_ctx = args.context_size
|
|
|
|
# Use a easy prompt could bring good-enough result
|
|
# You could tune the prompt based on your own model to perform better
|
|
template = """
|
|
{history}
|
|
|
|
Q: {human_input}
|
|
A:"""
|
|
prompt = PromptTemplate(input_variables=["history", "human_input"], template=template)
|
|
|
|
# We use our BigDLCausalLLM to subsititute OpenAI web-required API
|
|
model_family_to_llm = {
|
|
"llama": LlamaLLM,
|
|
"gptneox": GptneoxLLM,
|
|
"bloom": BloomLLM,
|
|
"starcoder": StarcoderLLM,
|
|
"chatglm": ChatGLMLLM
|
|
}
|
|
|
|
if model_family in model_family_to_llm:
|
|
langchain_llm = model_family_to_llm[model_family]
|
|
else:
|
|
raise ValueError(f"Unknown model family: {model_family}")
|
|
|
|
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
|
llm = langchain_llm(
|
|
model_path=model_path,
|
|
n_threads=n_threads,
|
|
callback_manager=callback_manager,
|
|
verbose=True,
|
|
n_ctx=n_ctx,
|
|
stop=['\n\n'] # You could tune the stop words based on your own model to perform better
|
|
)
|
|
|
|
# Following code are complete the same as the use-case
|
|
voiceassitant_chain = LLMChain(
|
|
llm=llm,
|
|
prompt=prompt,
|
|
verbose=True,
|
|
memory=ConversationBufferWindowMemory(k=2),
|
|
)
|
|
|
|
return voiceassitant_chain
|
|
|
|
|
|
def listen(voiceassitant_chain):
|
|
engine = pyttsx3.init()
|
|
r = sr.Recognizer()
|
|
with sr.Microphone() as source:
|
|
print("Calibrating...")
|
|
r.adjust_for_ambient_noise(source, duration=5)
|
|
# optional parameters to adjust microphone sensitivity
|
|
# r.energy_threshold = 200
|
|
# r.pause_threshold=0.5
|
|
|
|
print("Okay, go!")
|
|
while 1:
|
|
text = ""
|
|
print("listening now...")
|
|
try:
|
|
audio = r.listen(source, timeout=5, phrase_time_limit=30)
|
|
print("Recognizing...")
|
|
# whisper model options are found here: https://github.com/openai/whisper#available-models-and-languages
|
|
# other speech recognition models are also available.
|
|
text = r.recognize_whisper(
|
|
audio,
|
|
model="medium.en",
|
|
show_dict=True,
|
|
)["text"]
|
|
except Exception as e:
|
|
unrecognized_speech_text = (
|
|
f"Sorry, I didn't catch that. Exception was: {e}s"
|
|
)
|
|
text = unrecognized_speech_text
|
|
print(text)
|
|
|
|
response_text = voiceassitant_chain.predict(human_input=text)
|
|
print(response_text)
|
|
engine.say(response_text)
|
|
engine.runAndWait()
|
|
|
|
|
|
def main(args):
|
|
chain = prepare_chain(args)
|
|
listen(chain)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='BigDLCausalLM Langchain Voice Assistant Example')
|
|
parser.add_argument('-x','--model-family', type=str, required=True,
|
|
choices=["llama", "bloom", "gptneox", "chatglm", "starcoder"],
|
|
help='the model family')
|
|
parser.add_argument('-m','--model-path', type=str, required=True,
|
|
help='the path to the converted llm model')
|
|
parser.add_argument('-t','--thread-num', type=int, default=2,
|
|
help='Number of threads to use for inference')
|
|
parser.add_argument('-c','--context-size', type=int, default=512,
|
|
help='Maximum context size')
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|