ipex-llm/python/llm/example/GPU/LLM-Finetuning/common/utils/util.py
Wang, Jian4 9df70d95eb
Refactor bigdl.llm to ipex_llm (#24)
* Rename bigdl/llm to ipex_llm

* rm python/llm/src/bigdl

* from bigdl.llm to from ipex_llm
2024-03-22 15:41:21 +08:00

213 lines
7.8 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/tloen/alpaca-lora/blob/main/finetune.py
#
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from https://github.com/tloen/alpaca-lora/blob/main/export_hf_checkpoint.py
#
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import transformers
def get_int_from_env(env_keys, default):
"""Returns the first positive env value found in the `env_keys` list or the default."""
for e in env_keys:
val = int(os.environ.get(e, -1))
if val >= 0:
return val
return int(default)
def wandb_check(wandb_project, wandb_watch, wandb_log_model):
"""Check if wandb related parameter passed or if set within environ"""
use_wandb = len(wandb_project) > 0 or (
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
)
# Only overwrite environ if wandb param passed
if len(wandb_project) > 0:
os.environ["WANDB_PROJECT"] = wandb_project
if len(wandb_watch) > 0:
os.environ["WANDB_WATCH"] = wandb_watch
if len(wandb_log_model) > 0:
os.environ["WANDB_LOG_MODEL"] = wandb_log_model
return use_wandb
def get_train_val_data(data, tokenizer, prompter, train_on_inputs,
add_eos_token, cutoff_len, val_set_size, seed=42):
"""Data processing to get train data and val data"""
def tokenize(prompt, add_eos_token=True):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
full_prompt = prompter.generate_prompt(
data_point["instruction"],
data_point["input"],
data_point["output"],
)
tokenized_full_prompt = tokenize(full_prompt)
if not train_on_inputs:
user_prompt = prompter.generate_prompt(
data_point["instruction"], data_point["input"]
)
tokenized_user_prompt = tokenize(
user_prompt, add_eos_token=add_eos_token
)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
if add_eos_token:
user_prompt_len -= 1
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][
user_prompt_len:
] # could be sped up, probably
return tokenized_full_prompt
if val_set_size > 0:
train_val = data["train"].train_test_split(
test_size=val_set_size, shuffle=True, seed=seed
)
train_data = (
train_val["train"].shuffle().map(generate_and_tokenize_prompt)
)
val_data = (
train_val["test"].shuffle().map(generate_and_tokenize_prompt)
)
else:
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = None
return train_data, val_data
def merge_adapter(base_model, tokenizer, adapter_path, output_path):
"""Merge the adapter into the original model and save"""
import torch
from ipex_llm.transformers.qlora import PeftModel, LoraConfig
from ipex_llm.transformers import AutoModelForCausalLM
from ipex_llm.transformers.low_bit_linear import get_block_size
import tempfile
import shutil
lora_config = LoraConfig.from_json_file(os.path.join(adapter_path, "adapter_config.json"))
training_mode = lora_config.get("training_mode", "qlora")
qa_lora = training_mode == "qalora"
temp_dir = None
if qa_lora:
# Convert the qa-lora adapter to the correct shapes
# The default 4-bit format for qa_lora is sym_int4
block_size = get_block_size("sym_int4")
temp_dir = tempfile.TemporaryDirectory()
tmpdirname = os.path.join(temp_dir.name, "adapter")
try:
shutil.copytree(adapter_path, tmpdirname)
except Exception as e:
print(f"Failed to copy adapter dir, error: {e}")
mid_lora_path = os.path.join(tmpdirname, "adapter_model.bin")
adapter_path = os.path.join(adapter_path, "adapter_model.bin")
lora = torch.load(adapter_path, map_location='cpu')
# Get lora_a names
tmp_keys = [key for key in lora.keys() if 'lora_A' in key]
for tmp_key in tmp_keys:
lora_a = lora[tmp_key] / block_size
lora[tmp_key] = torch.repeat_interleave(lora_a, block_size, dim=1)
torch.save(lora, mid_lora_path)
adapter_path = tmpdirname
try:
base_model = AutoModelForCausalLM.from_pretrained(
base_model,
# load_in_low_bit="nf4", # should load the orignal model
torch_dtype=torch.float16,
device_map={"": "cpu"},
)
lora_model = PeftModel.from_pretrained(
base_model,
adapter_path,
device_map={"": "cpu"},
torch_dtype=torch.float16,
)
# merge weights - new merging method from peft
lora_model = lora_model.merge_and_unload()
lora_model.train(False)
lora_model_sd = lora_model.state_dict()
deloreanized_sd = {
k.replace("base_model.model.", ""): v
for k, v in lora_model_sd.items()
if "lora" not in k
}
base_model.save_pretrained(output_path, state_dict=deloreanized_sd)
tokenizer.save_pretrained(output_path)
except Exception as e:
print(f"Failed to merge the adapter, error: {e}.")
finally:
if qa_lora and temp_dir:
temp_dir.cleanup()