* Update default transformers version to 4.37.0 * Add dependency requirements for qwen and qwen-vl * Temp fix transformers version for these not yet verified models * Skip qwen test in UT for now as it requires transformers<4.37.0
109 lines
4.9 KiB
Python
109 lines
4.9 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
|
|
import os
|
|
import pytest
|
|
import tempfile
|
|
|
|
import torch
|
|
from ipex_llm.transformers import AutoModelForCausalLM, AutoModel, AutoModelForSpeechSeq2Seq
|
|
from transformers import LlamaTokenizer, AutoTokenizer
|
|
|
|
device = os.environ['DEVICE']
|
|
print(f'Running on {device}')
|
|
|
|
@pytest.mark.parametrize('prompt, answer', [
|
|
('What is the capital of France?\n\n', 'Paris')
|
|
])
|
|
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
|
|
(AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH')),
|
|
(AutoModel, AutoTokenizer, os.environ.get('CHATGLM2_6B_ORIGIN_PATH')),
|
|
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH')),
|
|
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
|
|
# (AutoModelForCausalLM, AutoTokenizer, os.environ.get('MISTRAL_7B_INSTRUCT_V0_1_ORIGIN_PATH')),
|
|
# (AutoModelForCausalLM, AutoTokenizer, os.environ.get('BAICHUAN2_7B_ORIGIN_PATH')),
|
|
# (AutoModelForCausalLM, AutoTokenizer, os.environ.get('QWEN_7B_ORIGIN_PATH')), # qwen requires transformers<4.37.0
|
|
])
|
|
def test_completion(Model, Tokenizer, model_path, prompt, answer):
|
|
with torch.inference_mode():
|
|
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = Model.from_pretrained(model_path,
|
|
load_in_4bit=True,
|
|
optimize_model=True,
|
|
trust_remote_code=True)
|
|
model = model.to(device)
|
|
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
|
output = model.generate(input_ids, max_new_tokens=32)
|
|
model.to('cpu') # deallocate gpu memory
|
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
assert answer in output_str
|
|
|
|
@pytest.mark.parametrize('prompt, answer', [
|
|
('What is the capital of France?\n\n', 'Paris')
|
|
])
|
|
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
|
|
(AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH')),
|
|
(AutoModel, AutoTokenizer, os.environ.get('CHATGLM2_6B_ORIGIN_PATH')),
|
|
])
|
|
def test_load_low_bit_completion(Model, Tokenizer, model_path, prompt, answer):
|
|
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
model = Model.from_pretrained(model_path,
|
|
load_in_4bit=True,
|
|
optimize_model=True,
|
|
trust_remote_code=True)
|
|
|
|
with tempfile.TemporaryDirectory() as tempdir:
|
|
model.save_low_bit(tempdir)
|
|
loaded_model = Model.load_low_bit(tempdir,
|
|
optimize_model=True,
|
|
trust_remote_code=True)
|
|
|
|
with torch.inference_mode():
|
|
loaded_model = loaded_model.to(device)
|
|
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
|
output = loaded_model.generate(input_ids, max_new_tokens=32)
|
|
loaded_model.to('cpu') # deallocate gpu memory
|
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
assert answer in output_str
|
|
|
|
def test_transformers_auto_model_for_speech_seq2seq_int4():
|
|
with torch.inference_mode():
|
|
from transformers import WhisperProcessor
|
|
from datasets import load_from_disk
|
|
model_path = os.environ.get('WHISPER_TINY_ORIGIN_PATH')
|
|
dataset_path = os.environ.get('SPEECH_DATASET_PATH')
|
|
processor = WhisperProcessor.from_pretrained(model_path)
|
|
ds = load_from_disk(dataset_path)
|
|
sample = ds[0]["audio"]
|
|
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
|
|
input_features = input_features.to(device)
|
|
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True, optimize_model=True)
|
|
model = model.to(device)
|
|
predicted_ids = model.generate(input_features)
|
|
# decode token ids to text
|
|
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
|
|
model.to('cpu')
|
|
print('Output:', transcription)
|
|
assert 'Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.' in transcription[0]
|
|
|
|
|
|
if __name__ == '__main__':
|
|
pytest.main([__file__])
|