* Add init example for omni mode * Small fix * Small fix * Add chat example * Remove lagecy link * Further update link * Add readme * Small fix * Update main readme link * Update based on comments * Small fix * Small fix * Small fix
		
			
				
	
	
		
			119 lines
		
	
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			119 lines
		
	
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import os
 | 
						|
import time
 | 
						|
import torch
 | 
						|
import librosa
 | 
						|
import argparse
 | 
						|
from PIL import Image
 | 
						|
from transformers import AutoTokenizer
 | 
						|
from ipex_llm.transformers import AutoModel
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='Chat with MiniCPM-o-2_6 with text/audio/image')
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-o-2_6",
 | 
						|
                        help='The Hugging Face or ModelScope repo id for the MiniCPM-o-2_6 model to be downloaded'
 | 
						|
                             ', or the path to the checkpoint folder')
 | 
						|
    parser.add_argument('--image-path', type=str,
 | 
						|
                        help='The path to the image for inference.')
 | 
						|
    parser.add_argument('--audio-path', type=str,
 | 
						|
                        help='The path to the audio for inference.')
 | 
						|
    parser.add_argument('--prompt', type=str,
 | 
						|
                        help='Prompt for inference.')
 | 
						|
    parser.add_argument('--n-predict', type=int, default=32,
 | 
						|
                        help='Max tokens to predict')
 | 
						|
    
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    model_path = args.repo_id_or_model_path
 | 
						|
    image_path = args.image_path
 | 
						|
    audio_path = args.audio_path
 | 
						|
 | 
						|
    modules_to_not_convert = []
 | 
						|
    init_vision = False
 | 
						|
    init_audio = False
 | 
						|
    if image_path is not None and os.path.exists(image_path):
 | 
						|
        init_vision = True
 | 
						|
        modules_to_not_convert += ["vpm", "resampler"]
 | 
						|
    if audio_path is not None and os.path.exists(audio_path):
 | 
						|
        init_audio = True
 | 
						|
        modules_to_not_convert += ["apm"]
 | 
						|
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    model = AutoModel.from_pretrained(model_path, 
 | 
						|
                                      load_in_low_bit="sym_int4",
 | 
						|
                                      optimize_model=True,
 | 
						|
                                      trust_remote_code=True,
 | 
						|
                                      attn_implementation='sdpa',
 | 
						|
                                      use_cache=True,
 | 
						|
                                      init_vision=init_vision,
 | 
						|
                                      init_audio=init_audio,
 | 
						|
                                      init_tts=False,
 | 
						|
                                      modules_to_not_convert=modules_to_not_convert)
 | 
						|
    
 | 
						|
    model = model.half().to('xpu')
 | 
						|
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
						|
                                              trust_remote_code=True)
 | 
						|
    
 | 
						|
 | 
						|
    # The following code for generation is adapted from 
 | 
						|
    # https://huggingface.co/openbmb/MiniCPM-o-2_6#addressing-various-audio-understanding-tasks and
 | 
						|
    # https://huggingface.co/openbmb/MiniCPM-o-2_6#chat-with-single-image
 | 
						|
    content = []
 | 
						|
    if init_vision:
 | 
						|
        image_input = Image.open(image_path).convert('RGB')
 | 
						|
        content.append(image_input)
 | 
						|
    if args.prompt is not None:
 | 
						|
        content.append(args.prompt)
 | 
						|
    if init_audio:
 | 
						|
        audio_input, _ = librosa.load(audio_path, sr=16000, mono=True)
 | 
						|
        content.append(audio_input)
 | 
						|
    messages = [{'role': 'user', 'content': content}]
 | 
						|
 | 
						|
 | 
						|
    with torch.inference_mode():
 | 
						|
        # ipex_llm model needs a warmup, then inference time can be accurate
 | 
						|
        model.chat(
 | 
						|
            msgs=messages,
 | 
						|
            tokenizer=tokenizer,
 | 
						|
            sampling=True,
 | 
						|
            max_new_tokens=args.n_predict,
 | 
						|
        )
 | 
						|
 | 
						|
        st = time.time()
 | 
						|
        response = model.chat(
 | 
						|
            msgs=messages,
 | 
						|
            tokenizer=tokenizer,
 | 
						|
            sampling=True,
 | 
						|
            max_new_tokens=args.n_predict,
 | 
						|
        )
 | 
						|
        torch.xpu.synchronize()
 | 
						|
        end = time.time()
 | 
						|
 | 
						|
    print(f'Inference time: {end-st} s')
 | 
						|
    print('-'*20, 'Input Image Path', '-'*20)
 | 
						|
    print(image_path)
 | 
						|
    print('-'*20, 'Input Audio Path', '-'*20)
 | 
						|
    print(audio_path)
 | 
						|
    print('-'*20, 'Input Prompt', '-'*20)
 | 
						|
    print(args.prompt)
 | 
						|
    print('-'*20, 'Chat Output', '-'*20)
 | 
						|
    print(response)
 | 
						|
 |