58 lines
		
	
	
		
			No EOL
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			58 lines
		
	
	
		
			No EOL
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
# Code is adapted from https://huggingface.co/docs/diffusers/en/using-diffusers/sdxl
 | 
						|
 | 
						|
from diffusers import AutoPipelineForText2Image
 | 
						|
import torch
 | 
						|
from ipex_llm import optimize_model
 | 
						|
import numpy as np
 | 
						|
from PIL import Image
 | 
						|
import argparse
 | 
						|
import time
 | 
						|
 | 
						|
 | 
						|
def main(args):
 | 
						|
    pipeline_text2image = AutoPipelineForText2Image.from_pretrained(
 | 
						|
        args.repo_id_or_model_path, 
 | 
						|
        torch_dtype=torch.float16, 
 | 
						|
        use_safetensors=True
 | 
						|
    )
 | 
						|
    pipeline_text2image = optimize_model(pipeline_text2image, low_bit=None)
 | 
						|
    pipeline_text2image.to("xpu")
 | 
						|
 | 
						|
    with torch.inference_mode():
 | 
						|
        # warmup
 | 
						|
        image = pipeline_text2image(prompt=args.prompt,num_inference_steps=args.num_steps).images[0]
 | 
						|
 | 
						|
        # start inference
 | 
						|
        st = time.time()
 | 
						|
        image = pipeline_text2image(prompt=args.prompt,num_inference_steps=args.num_steps).images[0]
 | 
						|
        end = time.time()
 | 
						|
        print(f'Inference time: {end-st} s')
 | 
						|
        image.save(args.save_path)
 | 
						|
 | 
						|
if __name__=="__main__":
 | 
						|
    parser = argparse.ArgumentParser(description="Stable Diffusion")
 | 
						|
    parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0",
 | 
						|
                        help='The huggingface repo id for the stable diffusion model checkpoint')
 | 
						|
    parser.add_argument('--prompt', type=str, default="An astronaut in the forest, detailed, 8k",
 | 
						|
                        help='Prompt to infer')
 | 
						|
    parser.add_argument('--save-path',type=str,default="sdxl-gpu.png",
 | 
						|
                        help="Path to save the generated figure")
 | 
						|
    parser.add_argument('--num-steps',type=int,default=20,
 | 
						|
                        help="Number of inference steps")
 | 
						|
    args = parser.parse_args()
 | 
						|
    main(args) |