* Add is_last parameter and fix logical operator in highlight_vals * Add script to update HTML files in parent folder * Add running update_html_in_parent_folder.py in summarize step * Add licence info * Remove update_html_in_parent_folder.py in Summarize the results for pull request
220 lines
9.5 KiB
Python
220 lines
9.5 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
# Python program to convert CSV to HTML Table
|
|
|
|
import os
|
|
import sys
|
|
import argparse
|
|
import pandas as pd
|
|
|
|
def highlight_vals(val, max=3.0, color1='red', color2='green', color3='yellow', is_last=False):
|
|
if isinstance(val, float):
|
|
if val > max:
|
|
return 'background-color: %s' % color2
|
|
elif val <= -max:
|
|
return 'background-color: %s' % color1
|
|
elif val != 0.0 and is_last:
|
|
return 'background-color: %s' % color3
|
|
else:
|
|
return ''
|
|
|
|
def nonzero_min(lst):
|
|
non_zero_lst = [num for num in lst if num > 0.0]
|
|
return min(non_zero_lst) if non_zero_lst else None
|
|
|
|
def is_diffs_within_normal_range(diff_Arc, diff_TruthfulQA, diff_Winogrande, threshold=5.0):
|
|
return not any(diff < (-threshold) for diff in diff_Arc + diff_TruthfulQA + diff_Winogrande if isinstance(diff, float))
|
|
|
|
def add_to_dict(dict, key, value):
|
|
if key not in dict:
|
|
dict[key] = []
|
|
dict[key].append(value)
|
|
|
|
def best_in_dict(dict, key, value):
|
|
if key in dict:
|
|
best_value = nonzero_min(dict[key])
|
|
if best_value < value or value <= 0.0:
|
|
return best_value
|
|
return value
|
|
return value
|
|
|
|
def create_fp16_dict(fp16_path):
|
|
fp16_df = pd.read_csv(fp16_path)
|
|
fp16_dict = {}
|
|
for _, row in fp16_df.iterrows():
|
|
model = row['Model']
|
|
# Formalize the data to have 2 decimal places
|
|
fp16_dict[model] = {
|
|
'Arc': "{:.2f}".format(row['Arc']),
|
|
'TruthfulQA': "{:.2f}".format(row['TruthfulQA']),
|
|
'Winogrande': "{:.2f}".format(row['Winogrande'])
|
|
}
|
|
return fp16_dict
|
|
|
|
def calculate_percentage_difference(current, fp16):
|
|
if fp16 != 'N/A' and current != 'N/A' and float(fp16) != 0:
|
|
return (float(current) - float(fp16)) / float(fp16) * 100
|
|
else:
|
|
return 'N/A'
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="convert .csv file to .html file")
|
|
parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
|
|
help="The directory which stores the .csv file", default="/home/arda/yibo/BigDL/python/llm/dev/benchmark/harness")
|
|
parser.add_argument("-t", "--threshold", type=float, dest="threshold",
|
|
help="the threshold of highlight values", default=3.0)
|
|
parser.add_argument("-b", "--baseline_path", type=str, dest="baseline_path",
|
|
help="the baseline path which stores the baseline.csv file")
|
|
args = parser.parse_args()
|
|
|
|
# fp16.csv is downloaded previously under the parent folder of the folder_path
|
|
parent_dir = os.path.dirname((args.folder_path))
|
|
fp16_path = os.path.join(parent_dir, 'fp16.csv')
|
|
fp16_dict = create_fp16_dict(fp16_path)
|
|
|
|
csv_files = []
|
|
for file_name in os.listdir(args.folder_path):
|
|
file_path = os.path.join(args.folder_path, file_name)
|
|
if os.path.isfile(file_path) and file_name.endswith(".csv"):
|
|
csv_files.append(file_path)
|
|
csv_files.sort(reverse=True)
|
|
|
|
highlight_threshold=args.threshold
|
|
|
|
latest_csv = pd.read_csv(csv_files[0], index_col=0)
|
|
daily_html=csv_files[0].split(".")[0]+".html"
|
|
|
|
# Reset index
|
|
latest_csv.reset_index(inplace=True)
|
|
|
|
diffs_within_normal_range = True
|
|
|
|
# Add display of FP16 values for each model and add percentage difference column
|
|
for task in ['Arc', 'TruthfulQA', 'Winogrande']:
|
|
latest_csv[f'{task}_FP16'] = latest_csv['Model'].apply(lambda model: fp16_dict.get(model, {}).get(task, 'N/A'))
|
|
latest_csv[f'{task}_diff_FP16(%)'] = latest_csv.apply(lambda row: calculate_percentage_difference(row[task], row[f'{task}_FP16']), axis=1)
|
|
|
|
if len(csv_files)>1:
|
|
if args.baseline_path:
|
|
previous_csv = pd.read_csv(args.baseline_path, index_col=0)
|
|
else:
|
|
previous_csv = pd.read_csv(csv_files[1], index_col=0)
|
|
|
|
last_Arc=['']*len(latest_csv.index)
|
|
diff_Arc=['']*len(latest_csv.index)
|
|
last_TruthfulQA=['']*len(latest_csv.index)
|
|
diff_TruthfulQA=['']*len(latest_csv.index)
|
|
last_Winogrande=['']*len(latest_csv.index)
|
|
diff_Winogrande=['']*len(latest_csv.index)
|
|
|
|
|
|
Arc='Arc'
|
|
TruthfulQA='TruthfulQA'
|
|
Winogrande='Winogrande'
|
|
|
|
csv_dict = {}
|
|
for csv_file in csv_files:
|
|
current_csv = pd.read_csv(csv_file, index_col=0)
|
|
for current_csv_ind,current_csv_row in current_csv.iterrows():
|
|
current_csv_model=current_csv_row['Model'].strip()
|
|
current_csv_precision=current_csv_row['Precision'].strip()
|
|
current_csv_model_arc=current_csv_model+'-'+current_csv_precision+'-'+'Arc'
|
|
current_csv_model_truthfulqa=current_csv_model+'-'+current_csv_precision+'-'+'TruthfulQA'
|
|
current_csv_model_winogrande=current_csv_model+'-'+current_csv_precision+'-'+'Winogrande'
|
|
add_to_dict(csv_dict, current_csv_model_arc, current_csv_row[Arc])
|
|
add_to_dict(csv_dict, current_csv_model_truthfulqa, current_csv_row[TruthfulQA])
|
|
add_to_dict(csv_dict, current_csv_model_winogrande, current_csv_row[Winogrande])
|
|
|
|
for latest_csv_ind,latest_csv_row in latest_csv.iterrows():
|
|
|
|
latest_csv_model=latest_csv_row['Model'].strip()
|
|
latest_csv_precision=latest_csv_row['Precision'].strip()
|
|
latest_arc=latest_csv_row[Arc]
|
|
latest_truthfulqa=latest_csv_row[TruthfulQA]
|
|
latest_winogrande=latest_csv_row[Winogrande]
|
|
|
|
in_previous_flag=False
|
|
|
|
for previous_csv_ind,previous_csv_row in previous_csv.iterrows():
|
|
|
|
previous_csv_model=previous_csv_row['Model'].strip()
|
|
previous_csv_precision=previous_csv_row['Precision'].strip()
|
|
|
|
if latest_csv_model==previous_csv_model and latest_csv_precision==previous_csv_precision:
|
|
|
|
previous_arc=previous_csv_row[Arc]
|
|
previous_truthfulqa=previous_csv_row[TruthfulQA]
|
|
previous_winogrande=previous_csv_row[Winogrande]
|
|
if previous_arc > 0.0 and previous_truthfulqa > 0.0 and previous_winogrande > 0.0:
|
|
last_Arc[latest_csv_ind]=previous_arc
|
|
diff_Arc[latest_csv_ind]=round((latest_arc-previous_arc)*100/previous_arc,2)
|
|
last_TruthfulQA[latest_csv_ind]=previous_truthfulqa
|
|
diff_TruthfulQA[latest_csv_ind]=round((latest_truthfulqa-previous_truthfulqa)*100/previous_truthfulqa,2)
|
|
last_Winogrande[latest_csv_ind]=previous_winogrande
|
|
diff_Winogrande[latest_csv_ind]=round((latest_winogrande-previous_winogrande)*100/previous_winogrande,2)
|
|
in_previous_flag=True
|
|
|
|
if not in_previous_flag:
|
|
last_Arc[latest_csv_ind]=pd.NA
|
|
diff_Arc[latest_csv_ind]=pd.NA
|
|
last_TruthfulQA[latest_csv_ind]=pd.NA
|
|
diff_TruthfulQA[latest_csv_ind]=pd.NA
|
|
last_Winogrande[latest_csv_ind]=pd.NA
|
|
diff_Winogrande[latest_csv_ind]=pd.NA
|
|
|
|
latest_csv.insert(loc=6,column='last_Arc',value=last_Arc)
|
|
latest_csv.insert(loc=7,column='diff_Arc(%)',value=diff_Arc)
|
|
latest_csv.insert(loc=8,column='last_TruthfulQA',value=last_TruthfulQA)
|
|
latest_csv.insert(loc=9,column='diff_TruthfulQA(%)',value=diff_TruthfulQA)
|
|
latest_csv.insert(loc=10,column='last_Winogrande',value=last_Winogrande)
|
|
latest_csv.insert(loc=11,column='diff_Winogrande(%)',value=diff_Winogrande)
|
|
|
|
|
|
diffs_within_normal_range = is_diffs_within_normal_range(diff_Arc, diff_TruthfulQA, diff_Winogrande, threshold=highlight_threshold)
|
|
|
|
subset1=['diff_Arc(%)','diff_TruthfulQA(%)','diff_Winogrande(%)' ]
|
|
|
|
columns={'Arc': '{:.2f}', 'TruthfulQA': '{:.2f}', 'Winogrande': '{:.2f}', 'last_Arc': '{:.2f}', 'diff_Arc(%)': '{:.2f}',
|
|
'last_TruthfulQA': '{:.2f}', 'diff_TruthfulQA(%)': '{:.2f}', 'last_Winogrande': '{:.2f}', 'diff_Winogrande(%)': '{:.2f}'}
|
|
|
|
latest_csv.drop('Index', axis=1, inplace=True)
|
|
|
|
styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=3.0, is_last=True), subset=subset1)
|
|
for task in ['Arc', 'TruthfulQA', 'Winogrande']:
|
|
styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=highlight_threshold, is_last=False), subset=[f'{task}_diff_FP16(%)'])
|
|
|
|
# add css style to restrict width and wrap text
|
|
styled_df.set_table_styles([{
|
|
'selector': 'th, td',
|
|
'props': [('max-width', '88px'), ('word-wrap', 'break-word')]
|
|
}], overwrite=False)
|
|
|
|
html_output = styled_df.set_table_attributes("border=1").to_html()
|
|
|
|
with open(daily_html, 'w') as f:
|
|
f.write(html_output)
|
|
else:
|
|
latest_csv.to_html(daily_html)
|
|
|
|
if args.baseline_path and not diffs_within_normal_range:
|
|
print("The diffs are outside the normal range: %" + str(highlight_threshold))
|
|
return 1
|
|
return 0
|
|
|
|
if __name__ == "__main__":
|
|
sys.exit(main())
|