110 lines
		
	
	
		
			No EOL
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			110 lines
		
	
	
		
			No EOL
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
# Python program to convert CSV to HTML Table
 | 
						|
 | 
						|
import os
 | 
						|
import sys
 | 
						|
import argparse
 | 
						|
import pandas as pd
 | 
						|
 | 
						|
def highlight_vals(val, max=3.0):
 | 
						|
    if isinstance(val, float):
 | 
						|
        if val > max:
 | 
						|
            return 'background-color: %s' % 'green'
 | 
						|
        elif val <= -max:
 | 
						|
            return 'background-color: %s' % 'red'
 | 
						|
    else:
 | 
						|
        return ''
 | 
						|
 | 
						|
def main():
 | 
						|
    parser = argparse.ArgumentParser(description="convert .csv file to .html file")
 | 
						|
    parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
 | 
						|
                        help="The directory which stores the .csv file", default="/mnt/disk1/nightly_perf_gpu/")
 | 
						|
    parser.add_argument("-t", "--threshold", type=float, dest="threshold",
 | 
						|
                        help="the threshold of highlight values", default=3.0)
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    csv_files = []
 | 
						|
    for file_name in os.listdir(args.folder_path):
 | 
						|
        file_path = os.path.join(args.folder_path, file_name)
 | 
						|
        if os.path.isfile(file_path) and file_name.endswith(".csv"):
 | 
						|
            csv_files.append(file_path)
 | 
						|
    csv_files.sort(reverse=True)
 | 
						|
 | 
						|
    highlight_threshold=args.threshold
 | 
						|
 | 
						|
    latest_csv = pd.read_csv(csv_files[0], index_col=0)
 | 
						|
    daily_html=csv_files[0].split(".")[0]+".html"
 | 
						|
 | 
						|
    if len(csv_files)>1:
 | 
						|
        previous_csv = pd.read_csv(csv_files[1], index_col=0)
 | 
						|
 | 
						|
        last1=['']*len(latest_csv.index)
 | 
						|
        diff1=['']*len(latest_csv.index)
 | 
						|
        last2=['']*len(latest_csv.index)
 | 
						|
        diff2=['']*len(latest_csv.index)
 | 
						|
 | 
						|
        latency_1st_token='1st token avg latency (ms)'
 | 
						|
        latency_2_avg='2+ avg latency (ms/token)'
 | 
						|
 | 
						|
        for latest_csv_ind,latest_csv_row in latest_csv.iterrows():
 | 
						|
 | 
						|
            latest_csv_model=latest_csv_row['model'].strip()
 | 
						|
            latest_csv_input_output_pairs=latest_csv_row['input/output tokens'].strip()
 | 
						|
            latest_1st_token_latency=latest_csv_row[latency_1st_token]
 | 
						|
            latest_2_avg_latency=latest_csv_row[latency_2_avg]
 | 
						|
 | 
						|
            in_previous_flag=False
 | 
						|
 | 
						|
            for previous_csv_ind,previous_csv_row in previous_csv.iterrows():
 | 
						|
 | 
						|
                previous_csv_model=previous_csv_row['model'].strip()
 | 
						|
                previous_csv_input_output_pairs=previous_csv_row['input/output tokens'].strip()
 | 
						|
 | 
						|
                if latest_csv_model==previous_csv_model and latest_csv_input_output_pairs==previous_csv_input_output_pairs:
 | 
						|
 | 
						|
                    previous_1st_token_latency=previous_csv_row[latency_1st_token]
 | 
						|
                    previous_2_avg_latency=previous_csv_row[latency_2_avg]
 | 
						|
                    last1[latest_csv_ind]=previous_1st_token_latency
 | 
						|
                    diff1[latest_csv_ind]=round((previous_1st_token_latency-latest_1st_token_latency)*100/previous_1st_token_latency,2)
 | 
						|
                    last2[latest_csv_ind]=previous_2_avg_latency
 | 
						|
                    diff2[latest_csv_ind]=round((previous_2_avg_latency-latest_2_avg_latency)*100/previous_2_avg_latency,2)
 | 
						|
                    in_previous_flag=True
 | 
						|
 | 
						|
            if not in_previous_flag:
 | 
						|
                last1[latest_csv_ind]=pd.NA
 | 
						|
                diff1[latest_csv_ind]=pd.NA
 | 
						|
                last2[latest_csv_ind]=pd.NA
 | 
						|
                diff2[latest_csv_ind]=pd.NA
 | 
						|
 | 
						|
        latest_csv.insert(loc=3,column='last1',value=last1)
 | 
						|
        latest_csv.insert(loc=4,column='diff1(%)',value=diff1)
 | 
						|
        latest_csv.insert(loc=5,column='last2',value=last2)
 | 
						|
        latest_csv.insert(loc=6,column='diff2(%)',value=diff2)
 | 
						|
 | 
						|
        subset=['diff1(%)','diff2(%)']
 | 
						|
        columns={'1st token avg latency (ms)': '{:.2f}', '2+ avg latency (ms/token)': '{:.2f}', 'last1': '{:.2f}', 'diff1(%)': '{:.2f}',
 | 
						|
                'last2': '{:.2f}', 'diff2(%)': '{:.2f}', 'encoder time (ms)': '{:.2f}', 'peak mem (GB)': '{:.2f}'}
 | 
						|
 | 
						|
        with open(daily_html, 'w') as f:
 | 
						|
            f.write(latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=highlight_threshold), subset)
 | 
						|
                            .set_table_attributes("border=1").render())
 | 
						|
    else:
 | 
						|
        latest_csv.to_html(daily_html)
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    sys.exit(main()) |