Add multi-stage Pipeline-Parallel-FastAPI example --------- Co-authored-by: hzjane <a1015616934@qq.com>
510 lines
21 KiB
Python
510 lines
21 KiB
Python
from torch import nn
|
|
import torch
|
|
import torch.distributed as dist
|
|
import intel_extension_for_pytorch as ipex
|
|
|
|
from typing import List, Optional, Tuple, Union, Iterator
|
|
import time
|
|
from transformers import AutoTokenizer, AutoConfig
|
|
from transformers.utils import logging
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
|
import numpy as np
|
|
import asyncio, uuid
|
|
import threading
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class PPConfig:
|
|
"""Configuration for ModelSlices."""
|
|
|
|
def __init__(self, pp_rank: int, pp_world_size: int) -> None:
|
|
self.pp_rank = pp_rank
|
|
self.pp_world_size = pp_world_size
|
|
self.is_head = self.pp_rank == 0
|
|
self.is_tail = self.pp_rank == self.pp_world_size - 1
|
|
|
|
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
|
def _make_causal_mask(
|
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
|
):
|
|
"""
|
|
Make causal mask used for bi-directional self-attention.
|
|
"""
|
|
bsz, tgt_len = input_ids_shape
|
|
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
|
mask_cond = torch.arange(mask.size(-1), device=device)
|
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
|
mask = mask.to(dtype)
|
|
|
|
if past_key_values_length > 0:
|
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
|
|
|
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
|
"""
|
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
|
"""
|
|
bsz, src_len = mask.size()
|
|
tgt_len = tgt_len if tgt_len is not None else src_len
|
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
|
|
|
inverted_mask = 1.0 - expanded_mask
|
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
|
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
|
# create causal mask
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
combined_attention_mask = None
|
|
if input_shape[-1] > 1:
|
|
combined_attention_mask = _make_causal_mask(
|
|
input_shape,
|
|
inputs_embeds.dtype,
|
|
device=inputs_embeds.device,
|
|
past_key_values_length=past_key_values_length,
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
|
inputs_embeds.device
|
|
)
|
|
combined_attention_mask = (
|
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
|
)
|
|
|
|
return combined_attention_mask
|
|
|
|
class DummyLayer(nn.Module):
|
|
pass
|
|
|
|
|
|
class PipelineBaseModel(nn.Module):
|
|
def __init__(self, config):
|
|
self.pp_config = PPConfig(pp_rank=dist.get_rank(), pp_world_size=dist.get_world_size())
|
|
nr_slices = self.pp_config.pp_world_size
|
|
# self.config.num_hidden_layers = 8
|
|
slice_size = (self.config.num_hidden_layers + nr_slices -
|
|
1) // nr_slices
|
|
self.layer_start = slice_size * self.pp_config.pp_rank
|
|
self.layer_end = self.layer_start + min(slice_size,
|
|
self.config.num_hidden_layers - self.layer_start)
|
|
self.num_layers = self.layer_end - self.layer_start
|
|
|
|
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
|
# create causal mask
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
combined_attention_mask = None
|
|
if input_shape[-1] > 1:
|
|
combined_attention_mask = _make_causal_mask(
|
|
input_shape,
|
|
inputs_embeds.dtype,
|
|
device=inputs_embeds.device,
|
|
past_key_values_length=past_key_values_length,
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
|
inputs_embeds.device
|
|
)
|
|
combined_attention_mask = (
|
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
|
)
|
|
|
|
return combined_attention_mask
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# retrieve input_ids and inputs_embeds
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
assert self.pp_config.is_head, "input_ids is only supported on the head stage"
|
|
batch_size, seq_length = input_ids.shape
|
|
elif inputs_embeds is not None:
|
|
assert not self.pp_config.is_head, "inputs_embeds is only supported on the tail stage"
|
|
batch_size, seq_length, _ = inputs_embeds.shape
|
|
else:
|
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
|
|
|
seq_length_with_past = seq_length
|
|
past_key_values_length = 0
|
|
|
|
if past_key_values is not None:
|
|
past_key_values_length = past_key_values[0][0].shape[2]
|
|
seq_length_with_past = seq_length_with_past + past_key_values_length
|
|
|
|
if position_ids is None:
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
position_ids = torch.arange(
|
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
|
)
|
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
|
else:
|
|
position_ids = position_ids.view(-1, seq_length).long()
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
# embed positions
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones(
|
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
|
)
|
|
attention_mask = self._prepare_decoder_attention_mask(
|
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
|
)
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
next_decoder_cache = () if use_cache else None
|
|
|
|
for idx in range(self.num_layers):
|
|
decoder_layer = self.layers[self.layer_start + idx]
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
|
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
if self.pp_config.is_tail:
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
# add hidden states from the last decoder layer
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
next_cache = next_decoder_cache if use_cache else None
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
)
|
|
|
|
|
|
def load_model(checkpoint):
|
|
from llama_models import LlamaForCausalLM
|
|
if 'llama' in checkpoint.lower():
|
|
model = LlamaForCausalLM.from_pretrained(checkpoint, low_cpu_mem_usage=True, torch_dtype=torch.float16)
|
|
return model
|
|
|
|
from pydantic import BaseModel
|
|
class BatchTask(BaseModel):
|
|
batch_id: str
|
|
request_ids: List[str]
|
|
max_tokens: int
|
|
batch_size: int
|
|
input_len: int
|
|
# plain_texts: List[str]
|
|
prompt_lengths: List[int]
|
|
stopped: bool
|
|
# input_ids: torch.Tensor
|
|
# attention_mask: torch.Tensor
|
|
|
|
|
|
def make_attention_mask(prompt_lengths):
|
|
max_length = max(prompt_lengths)
|
|
attention_mask = torch.zeros((len(prompt_lengths), max_length), dtype=torch.int64)
|
|
for i, length in enumerate(prompt_lengths):
|
|
attention_mask[i, max_length - length:] = 1
|
|
return attention_mask
|
|
|
|
class ModelRunner:
|
|
|
|
def __init__(self, checkpoint, rank, world_size, low_bit, max_num_seqs):
|
|
|
|
import sys
|
|
self.pp_config = PPConfig(rank, world_size)
|
|
|
|
start = time.perf_counter()
|
|
model = load_model(checkpoint)
|
|
end = time.perf_counter()
|
|
logger.info(f"Time to load weights: {end - start:.2f}s")
|
|
from ipex_llm import optimize_model
|
|
|
|
model = optimize_model(model, low_bit=low_bit)
|
|
|
|
model = model.to(torch.float16).to(f'xpu:{rank}')
|
|
self.model = model
|
|
self.rank = rank
|
|
self.world_size = world_size
|
|
self.pre_rank = (self.rank - 1) % self.world_size
|
|
self.next_rank = (self.rank + 1) % self.world_size
|
|
self.hidden_size = self.model.config.hidden_size
|
|
|
|
self.max_num_seqs = max_num_seqs
|
|
self.on_going_batches = [None] * self.world_size
|
|
self.input_ids_dict = {}
|
|
# self.attention_mask_dict = {}
|
|
self.past_key_values_dict = {}
|
|
self.tokens = {}
|
|
self.token_times = {}
|
|
self.dtype = torch.float16
|
|
|
|
self.waiting_requests = asyncio.Queue()
|
|
self.send_buff = None
|
|
self.dict_lock = threading.Lock()
|
|
|
|
|
|
# def generate(self, input_ids=None, max_tokens=5, attention_mask=None):
|
|
# times = []
|
|
# with torch.no_grad():
|
|
# _input_ids = None
|
|
# _past_key_values = None
|
|
# bs = input_ids.shape[0]
|
|
# output_ids = input_ids.clone()
|
|
# for i in range(max_tokens):
|
|
# start = time.perf_counter()
|
|
# if _input_ids is None:
|
|
# _input_ids = input_ids
|
|
# if self.rank == 0:
|
|
# outputs = self.model(input_ids=_input_ids, attention_mask=attention_mask, past_key_values=_past_key_values, use_cache=True)
|
|
# else:
|
|
# inputs_embeds = torch.empty(_input_ids.shape + (self.hidden_size,) , device=f'xpu:{self.rank}', dtype=torch.float32)
|
|
# dist.recv(inputs_embeds, src=self.pre_rank)
|
|
# outputs = self.model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, past_key_values=_past_key_values, use_cache=True)
|
|
|
|
# if self.rank == self.world_size - 1:
|
|
# logits = outputs.logits
|
|
# next_ids = torch.argmax(logits[:, -1:, :], dim=-1)
|
|
# assert next_ids.shape == (bs, 1)
|
|
# dist.broadcast(next_ids, src=self.rank)
|
|
# else:
|
|
# dist.send(outputs.last_hidden_state, dst=self.next_rank)
|
|
# next_ids = torch.empty((bs, 1), device=f'xpu:{self.rank}', dtype=torch.int64)
|
|
# dist.broadcast(next_ids, src=self.world_size - 1)
|
|
|
|
# _input_ids = next_ids
|
|
# output_ids = torch.cat([output_ids, next_ids], dim=-1)
|
|
# _past_key_values = outputs.past_key_values
|
|
# end = time.perf_counter()
|
|
# times.append(end - start)
|
|
|
|
# if self.rank == 0:
|
|
# logger.info(f"first token latency: {times[0]}, rest token avg latecy: {np.mean(times[1:])}")
|
|
# return output_ids
|
|
|
|
|
|
def model_step(self, input, cur_batch):
|
|
if cur_batch is None or cur_batch.stopped or input is None:
|
|
return None
|
|
|
|
cur_id = cur_batch.batch_id
|
|
_past_key_values = self.past_key_values_dict.get(cur_id, None)
|
|
# attention_mask = self.attention_mask_dict[cur_id]
|
|
attention_mask = make_attention_mask(cur_batch.prompt_lengths)
|
|
|
|
if self.rank == 0:
|
|
input_ids = input
|
|
inputs_embeds = None
|
|
else:
|
|
input_ids = None
|
|
inputs_embeds = input
|
|
output = self.model(
|
|
input_ids=input_ids,
|
|
inputs_embeds=inputs_embeds,
|
|
attention_mask=attention_mask,
|
|
past_key_values=_past_key_values,
|
|
use_cache=True
|
|
)
|
|
self.past_key_values_dict[cur_id] = output.past_key_values
|
|
if not self.pp_config.is_tail:
|
|
return output.last_hidden_state
|
|
else:
|
|
# logger.info(f"logits: {output.logits.shape}")
|
|
return output.logits
|
|
|
|
|
|
def is_initialized(self):
|
|
return True
|
|
|
|
|
|
async def add_request(self, tokenizer):
|
|
request_ids, prompt_requests = [], []
|
|
for _ in range(self.max_num_seqs):
|
|
if self.waiting_requests.empty():
|
|
break
|
|
|
|
tmp_result = await self.waiting_requests.get()
|
|
# logger.info(tmp_result)
|
|
request_id, prompt_request = tmp_result
|
|
request_ids.append(request_id)
|
|
prompt_requests.append(prompt_request)
|
|
|
|
plain_texts = [req.prompt for req in prompt_requests]
|
|
inputs = tokenizer(plain_texts, return_tensors="pt", padding=True)
|
|
input_ids = inputs.input_ids.to(f'xpu:{self.rank}')
|
|
attention_mask = inputs.attention_mask.to(f'xpu:{self.rank}')
|
|
new_batch = BatchTask(
|
|
batch_id="batch_" + str(uuid.uuid4()),
|
|
request_ids=request_ids,
|
|
max_tokens=max([req.n_predict for req in prompt_requests]),
|
|
batch_size=input_ids.size(0),
|
|
input_len=input_ids.size(1),
|
|
prompt_lengths=[sum(attention_mask[i,:]) for i in range(input_ids.size(0))],
|
|
stopped=False,
|
|
# plain_texts=plain_texts,
|
|
# input_ids=input_ids,
|
|
# attention_mask=attention_mask,
|
|
)
|
|
|
|
self.input_ids_dict[new_batch.batch_id] = input_ids
|
|
self.token_times[new_batch.batch_id] = [time.perf_counter()]
|
|
# self.attention_mask_dict[new_batch.batch_id] = attention_mask
|
|
|
|
return new_batch
|
|
|
|
|
|
def clear_batch(self, cur_id):
|
|
self.input_ids_dict.pop(cur_id, None)
|
|
self.tokens.pop(cur_id, None)
|
|
self.token_times.pop(cur_id, None)
|
|
# self.attention_mask_dict.pop(cur_id, None)
|
|
self.past_key_values_dict.pop(cur_id, None)
|
|
# torch.xpu.empty_cache()
|
|
|
|
|
|
async def process_step(self, tokenizer, result_dict):
|
|
cur_batch = None
|
|
|
|
if self.rank == 0:
|
|
if self.on_going_batches[0] is not None:
|
|
cur_batch = self.on_going_batches[0]
|
|
cur_input = None
|
|
|
|
if cur_batch is None:
|
|
if not self.waiting_requests.empty():
|
|
# await asyncio.sleep(0.01)
|
|
cur_batch = await self.add_request(tokenizer)
|
|
cur_input = self.input_ids_dict[cur_batch.batch_id]
|
|
else:
|
|
cur_batch = None
|
|
cur_input = None
|
|
|
|
if (cur_batch is not None) and (not cur_batch.stopped) and (cur_input is None):
|
|
cur_id = cur_batch.batch_id
|
|
next_ids = torch.empty((cur_batch.batch_size, 1,), device=f'xpu:{self.rank}', dtype=torch.int64)
|
|
# logger.info(f"rank: {self.rank}, recv: {next_ids.shape}")
|
|
dist.recv(next_ids, src=self.pre_rank)
|
|
|
|
if self.tokens.get(cur_id, None) is None:
|
|
self.tokens[cur_id] = []
|
|
|
|
if len(next_ids.shape) == 1:
|
|
next_ids = next_ids.unsqueeze(0)
|
|
self.tokens[cur_id].append(next_ids)
|
|
self.token_times[cur_id].append(time.perf_counter())
|
|
# self.input_ids_dict[cur_id] += next_ids
|
|
cur_input = next_ids
|
|
# cur_batch.input_len += 1
|
|
cur_batch.input_len = 1
|
|
cur_batch.prompt_lengths = [x + 1 for x in cur_batch.prompt_lengths]
|
|
if len(self.tokens[cur_id]) >= cur_batch.max_tokens:
|
|
# Finish a batch
|
|
# logger.info(self.tokens[cur_id])
|
|
outputs = torch.cat(self.tokens[cur_id], dim=1)
|
|
outputs = outputs.cpu()
|
|
output_strs = tokenizer.batch_decode(outputs, skip_special_tokens=False)
|
|
for request_id, output_str in zip(cur_batch.request_ids, output_strs):
|
|
with self.dict_lock:
|
|
result_dict[request_id] = output_str
|
|
|
|
cur_times = self.token_times[cur_id]
|
|
first_token = cur_times[1] - cur_times[0]
|
|
next_token = (cur_times[-1] - cur_times[1]) / (len(self.tokens[cur_id]) - 1)
|
|
logger.info(f"First token latency: {first_token}, next token latency: {next_token}")
|
|
self.clear_batch(cur_id)
|
|
cur_batch.stopped = True
|
|
else:
|
|
if (cur_batch is not None) and cur_batch.stopped:
|
|
cur_batch = None
|
|
|
|
if self.send_buff is not None:
|
|
# logger.info(f"rank: {self.rank}, send: {self.send_buff.shape}")
|
|
dist.send(self.send_buff, dst=self.next_rank)
|
|
dist.broadcast_object_list([cur_batch], src=0)
|
|
|
|
else:
|
|
batch_list = [None]
|
|
dist.broadcast_object_list(batch_list, src=0)
|
|
|
|
cur_batch = batch_list[0]
|
|
cur_input = None
|
|
|
|
if self.send_buff is not None:
|
|
# logger.info(f"rank: {self.rank}, send: {self.send_buff.shape}")
|
|
dist.send(self.send_buff, dst=self.next_rank)
|
|
|
|
if cur_batch is not None:
|
|
if cur_batch.stopped:
|
|
self.clear_batch(cur_batch.batch_id)
|
|
else:
|
|
cur_len = cur_batch.input_len
|
|
cur_input = torch.empty((cur_batch.batch_size, cur_len, self.hidden_size,), device=f'xpu:{self.rank}', dtype=self.dtype)
|
|
# logger.info(f"rank: {self.rank}, recv: {cur_input.shape}")
|
|
dist.recv(cur_input, src=self.pre_rank)
|
|
|
|
# if self.attention_mask_dict.get(cur_batch.batch_id, None) is None:
|
|
# self.attention_mask_dict[cur_batch.batch_id] = make_attention_mask(cur_batch.prompt_lengths)
|
|
|
|
# if self.rank == 0:
|
|
# logger.info(f"rank: {self.rank}, {batch_list}")
|
|
|
|
output = self.model_step(cur_input, cur_batch)
|
|
if output is not None and self.rank == self.world_size - 1:
|
|
output = torch.argmax(output[:, -1:, :], dim=-1)
|
|
|
|
if output is not None:
|
|
# dist.send(output, dst=self.next_rank)
|
|
self.send_buff = output
|
|
else:
|
|
self.send_buff = None
|
|
if self.rank == 0:
|
|
self.on_going_batches[:-1] = self.on_going_batches[1:]
|
|
self.on_going_batches[self.world_size - 1] = cur_batch
|
|
|