* feat: update readme for ppl test
* fix: textual adjustments
* fix: textual adjustments
* Add ipex-llm npu option in setup.py (#11858)
* add ipex-llm npu release
* update example doc
* meet latest release changes
* optimize phi3 memory usage (#11867)
* Update `ipex-llm` default transformers version to 4.37.0 (#11859)
* Update default transformers version to 4.37.0
* Add dependency requirements for qwen and qwen-vl
* Temp fix transformers version for these not yet verified models
* Skip qwen test in UT for now as it requires transformers<4.37.0
* Update performance test regarding updated default `transformers==4.37.0` (#11869)
* Update igpu performance from transformers 4.36.2 to 4.37.0 (#11841)
* upgrade arc perf test to transformers 4.37 (#11842)
* fix load low bit com dtype (#11832)
* feat: add mixed_precision argument on ppl longbench evaluation
* fix: delete extra code
* feat: upgrade arc perf test to transformers 4.37
* fix: add missing codes
* fix: keep perf test for qwen-vl-chat in transformers 4.36
* fix: remove extra space
* fix: resolve pr comment
* fix: add empty line
* fix: add pip install for spr and core test
* fix: delete extra comments
* fix: remove python -m for pip
* Revert "fix load low bit com dtype (#11832)"
This reverts commit 
		
	
					 | 
			||
|---|---|---|
| .. | ||
| all-in-one | ||
| ceval | ||
| harness | ||
| perplexity | ||
| whisper | ||
| README.md | ||
Benchmark tool for transformers int4 (separate 1st token and rest)
benchmark_util.py is used to provide a simple benchmark tool for transformer int4 model to calculate 1st token performance and the rest on CPU and GPU.
CPU Usage
Just put this file into your benchmark directory, and then wrap your transformer int4 model with BenchmarkWrapper (model = BenchmarkWrapper(model)).
Take chatglm-6b as an example:
import torch
from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer
from ipex_llm.utils import BenchmarkWrapper
model_path ='THUDM/chatglm-6b'
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
model = BenchmarkWrapper(model, do_print=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
prompt = "今天睡不着怎么办"
 
with torch.inference_mode():
    input_ids = tokenizer.encode(prompt, return_tensors="pt")
    output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
    output_str = tokenizer.decode(output[0], skip_special_tokens=True)
Output will be like:
=========First token cost xx.xxxxs=========
=========Last token cost average xx.xxxxs (31 tokens in all)=========
GPU Usage
Inference on single GPU
Just put this file into your benchmark directory, and then wrap your transformer int4 model with BenchmarkWrapper (model = BenchmarkWrapper(model)).
Take chatglm-6b as an example:
import torch
import intel_extension_for_pytorch as ipex
from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer
from ipex_llm.utils import BenchmarkWrapper
model_path ='THUDM/chatglm-6b'
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
model = model.to('xpu')
model = BenchmarkWrapper(model, do_print=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
prompt = "今天睡不着怎么办"
 
with torch.inference_mode():
    # wamup two times as use ipex
    for i in range(2):
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
        output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
    # collect performance data now
    for i in range(5):
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
        output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
Inference on multi GPUs
Similarly, put this file into your benchmark directory, and then wrap your optimized model with BenchmarkWrapper (model = BenchmarkWrapper(model)).
For example, just need to apply following code patch on Deepspeed Autotp example code to calculate 1st and the rest token performance:
 import torch
 import transformers
 import deepspeed
 from ipex_llm.utils import BenchmarkWrapper
 
 def get_int_from_env(env_keys, default):
     """Returns the first positive env value found in the `env_keys` list or the default."""
@@ -98,6 +99,7 @@ if __name__ == '__main__':
     init_distributed()
 
     print(model)
+    model = BenchmarkWrapper(model, do_print=True)
 
     # Load tokenizer
     tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
Sample Output
Output will be like:
=========First token cost xx.xxxxs=========
=========Last token cost average xx.xxxxs (31 tokens in all)=========