* move harness nightly files to test folder * change workflow file path accordingly * use arc01 when pr * fix path * fix fp16 csv path
		
			
				
	
	
		
			220 lines
		
	
	
	
		
			9.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			220 lines
		
	
	
	
		
			9.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
# Python program to convert CSV to HTML Table
 | 
						|
 | 
						|
import os
 | 
						|
import sys
 | 
						|
import argparse
 | 
						|
import pandas as pd
 | 
						|
 | 
						|
def highlight_vals(val, max=3.0, color1='red', color2='green', color3='yellow', is_last=False):
 | 
						|
    if isinstance(val, float):
 | 
						|
        if val > max:
 | 
						|
            return 'background-color: %s' % color2
 | 
						|
        elif val <= -max:
 | 
						|
            return 'background-color: %s' % color1
 | 
						|
        elif val != 0.0 and is_last:
 | 
						|
            return 'background-color: %s' % color3
 | 
						|
    else:
 | 
						|
        return ''
 | 
						|
 | 
						|
def nonzero_min(lst):
 | 
						|
    non_zero_lst = [num for num in lst if num > 0.0]
 | 
						|
    return min(non_zero_lst) if non_zero_lst else None
 | 
						|
 | 
						|
def is_diffs_within_normal_range(diff_Arc, diff_TruthfulQA, diff_Winogrande, threshold=5.0):
 | 
						|
    return not any(diff < (-threshold) for diff in diff_Arc + diff_TruthfulQA + diff_Winogrande if isinstance(diff, float))
 | 
						|
 | 
						|
def add_to_dict(dict, key, value):
 | 
						|
    if key not in dict:
 | 
						|
        dict[key] = []
 | 
						|
    dict[key].append(value)
 | 
						|
 | 
						|
def best_in_dict(dict, key, value):
 | 
						|
    if key in dict:
 | 
						|
        best_value = nonzero_min(dict[key])
 | 
						|
        if best_value < value or value <= 0.0:
 | 
						|
            return best_value
 | 
						|
        return value
 | 
						|
    return value
 | 
						|
 | 
						|
def create_fp16_dict(fp16_path):
 | 
						|
    fp16_df = pd.read_csv(fp16_path)
 | 
						|
    fp16_dict = {}
 | 
						|
    for _, row in fp16_df.iterrows():
 | 
						|
        model = row['Model']
 | 
						|
        # Formalize the data to have 2 decimal places
 | 
						|
        fp16_dict[model] = {
 | 
						|
            'Arc': "{:.2f}".format(row['Arc']),
 | 
						|
            'TruthfulQA': "{:.2f}".format(row['TruthfulQA']),
 | 
						|
            'Winogrande': "{:.2f}".format(row['Winogrande'])
 | 
						|
        }
 | 
						|
    return fp16_dict
 | 
						|
 | 
						|
def calculate_percentage_difference(current, fp16):
 | 
						|
    if fp16 != 'N/A' and current != 'N/A' and float(fp16) != 0:
 | 
						|
        return (float(current) - float(fp16)) / float(fp16) * 100
 | 
						|
    else:
 | 
						|
        return 'N/A'
 | 
						|
 | 
						|
 | 
						|
def main():
 | 
						|
    parser = argparse.ArgumentParser(description="convert .csv file to .html file")
 | 
						|
    parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
 | 
						|
                        help="The directory which stores the .csv file", default="/home/arda/yibo/BigDL/python/llm/dev/benchmark/harness")
 | 
						|
    parser.add_argument("-t", "--threshold", type=float, dest="threshold",
 | 
						|
                        help="the threshold of highlight values", default=3.0)
 | 
						|
    parser.add_argument("-b", "--baseline_path", type=str, dest="baseline_path",
 | 
						|
                        help="the baseline path which stores the baseline.csv file")
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    # fp16.csv is downloaded previously under the parent folder of the folder_path
 | 
						|
    parent_dir = os.path.dirname((args.folder_path))
 | 
						|
    fp16_path = os.path.join(parent_dir, 'fp16.csv')
 | 
						|
    fp16_dict = create_fp16_dict(fp16_path)
 | 
						|
 | 
						|
    csv_files = []
 | 
						|
    for file_name in os.listdir(args.folder_path):
 | 
						|
        file_path = os.path.join(args.folder_path, file_name)
 | 
						|
        if os.path.isfile(file_path) and file_name.endswith(".csv"):
 | 
						|
            csv_files.append(file_path)
 | 
						|
    csv_files.sort(reverse=True)
 | 
						|
 | 
						|
    highlight_threshold=args.threshold
 | 
						|
    
 | 
						|
    latest_csv = pd.read_csv(csv_files[0], index_col=0)
 | 
						|
    daily_html=csv_files[0].split(".")[0]+".html"
 | 
						|
 | 
						|
    # Reset index
 | 
						|
    latest_csv.reset_index(inplace=True)
 | 
						|
 | 
						|
    diffs_within_normal_range = True
 | 
						|
 | 
						|
    # Add display of FP16 values for each model and add percentage difference column
 | 
						|
    for task in ['Arc', 'TruthfulQA', 'Winogrande']:
 | 
						|
        latest_csv[f'{task}_FP16'] = latest_csv['Model'].apply(lambda model: fp16_dict.get(model, {}).get(task, 'N/A'))
 | 
						|
        latest_csv[f'{task}_diff_FP16(%)'] = latest_csv.apply(lambda row: calculate_percentage_difference(row[task], row[f'{task}_FP16']), axis=1)
 | 
						|
 | 
						|
    if len(csv_files)>1:
 | 
						|
        if args.baseline_path:
 | 
						|
            previous_csv = pd.read_csv(args.baseline_path, index_col=0)
 | 
						|
        else:
 | 
						|
            previous_csv = pd.read_csv(csv_files[1], index_col=0)
 | 
						|
 | 
						|
        last_Arc=['']*len(latest_csv.index)
 | 
						|
        diff_Arc=['']*len(latest_csv.index)
 | 
						|
        last_TruthfulQA=['']*len(latest_csv.index)
 | 
						|
        diff_TruthfulQA=['']*len(latest_csv.index)
 | 
						|
        last_Winogrande=['']*len(latest_csv.index)
 | 
						|
        diff_Winogrande=['']*len(latest_csv.index)
 | 
						|
 | 
						|
 | 
						|
        Arc='Arc'
 | 
						|
        TruthfulQA='TruthfulQA'
 | 
						|
        Winogrande='Winogrande'
 | 
						|
 | 
						|
        csv_dict = {}
 | 
						|
        for csv_file in csv_files:
 | 
						|
            current_csv = pd.read_csv(csv_file, index_col=0)
 | 
						|
            for current_csv_ind,current_csv_row in current_csv.iterrows():
 | 
						|
                current_csv_model=current_csv_row['Model'].strip()
 | 
						|
                current_csv_precision=current_csv_row['Precision'].strip()
 | 
						|
                current_csv_model_arc=current_csv_model+'-'+current_csv_precision+'-'+'Arc'
 | 
						|
                current_csv_model_truthfulqa=current_csv_model+'-'+current_csv_precision+'-'+'TruthfulQA'
 | 
						|
                current_csv_model_winogrande=current_csv_model+'-'+current_csv_precision+'-'+'Winogrande'
 | 
						|
                add_to_dict(csv_dict, current_csv_model_arc, current_csv_row[Arc])
 | 
						|
                add_to_dict(csv_dict, current_csv_model_truthfulqa, current_csv_row[TruthfulQA])
 | 
						|
                add_to_dict(csv_dict, current_csv_model_winogrande, current_csv_row[Winogrande])
 | 
						|
 | 
						|
        for latest_csv_ind,latest_csv_row in latest_csv.iterrows():
 | 
						|
 | 
						|
            latest_csv_model=latest_csv_row['Model'].strip()
 | 
						|
            latest_csv_precision=latest_csv_row['Precision'].strip()
 | 
						|
            latest_arc=latest_csv_row[Arc]
 | 
						|
            latest_truthfulqa=latest_csv_row[TruthfulQA]
 | 
						|
            latest_winogrande=latest_csv_row[Winogrande]
 | 
						|
 | 
						|
            in_previous_flag=False
 | 
						|
 | 
						|
            for previous_csv_ind,previous_csv_row in previous_csv.iterrows():
 | 
						|
 | 
						|
                previous_csv_model=previous_csv_row['Model'].strip()
 | 
						|
                previous_csv_precision=previous_csv_row['Precision'].strip()
 | 
						|
 | 
						|
                if latest_csv_model==previous_csv_model and latest_csv_precision==previous_csv_precision:
 | 
						|
 | 
						|
                    previous_arc=previous_csv_row[Arc]
 | 
						|
                    previous_truthfulqa=previous_csv_row[TruthfulQA]
 | 
						|
                    previous_winogrande=previous_csv_row[Winogrande]
 | 
						|
                    if previous_arc > 0.0 and previous_truthfulqa > 0.0 and previous_winogrande > 0.0:
 | 
						|
                        last_Arc[latest_csv_ind]=previous_arc
 | 
						|
                        diff_Arc[latest_csv_ind]=round((latest_arc-previous_arc)*100/previous_arc,2)
 | 
						|
                        last_TruthfulQA[latest_csv_ind]=previous_truthfulqa
 | 
						|
                        diff_TruthfulQA[latest_csv_ind]=round((latest_truthfulqa-previous_truthfulqa)*100/previous_truthfulqa,2)
 | 
						|
                        last_Winogrande[latest_csv_ind]=previous_winogrande
 | 
						|
                        diff_Winogrande[latest_csv_ind]=round((latest_winogrande-previous_winogrande)*100/previous_winogrande,2)
 | 
						|
                        in_previous_flag=True
 | 
						|
 | 
						|
            if not in_previous_flag:
 | 
						|
                last_Arc[latest_csv_ind]=pd.NA
 | 
						|
                diff_Arc[latest_csv_ind]=pd.NA
 | 
						|
                last_TruthfulQA[latest_csv_ind]=pd.NA
 | 
						|
                diff_TruthfulQA[latest_csv_ind]=pd.NA
 | 
						|
                last_Winogrande[latest_csv_ind]=pd.NA
 | 
						|
                diff_Winogrande[latest_csv_ind]=pd.NA
 | 
						|
 | 
						|
        latest_csv.insert(loc=6,column='last_Arc',value=last_Arc)
 | 
						|
        latest_csv.insert(loc=7,column='diff_Arc(%)',value=diff_Arc)
 | 
						|
        latest_csv.insert(loc=8,column='last_TruthfulQA',value=last_TruthfulQA)
 | 
						|
        latest_csv.insert(loc=9,column='diff_TruthfulQA(%)',value=diff_TruthfulQA)
 | 
						|
        latest_csv.insert(loc=10,column='last_Winogrande',value=last_Winogrande)
 | 
						|
        latest_csv.insert(loc=11,column='diff_Winogrande(%)',value=diff_Winogrande)
 | 
						|
 | 
						|
 | 
						|
        diffs_within_normal_range = is_diffs_within_normal_range(diff_Arc, diff_TruthfulQA, diff_Winogrande, threshold=highlight_threshold)
 | 
						|
 | 
						|
        subset1=['diff_Arc(%)','diff_TruthfulQA(%)','diff_Winogrande(%)' ]
 | 
						|
        
 | 
						|
        columns={'Arc': '{:.2f}', 'TruthfulQA': '{:.2f}', 'Winogrande': '{:.2f}', 'last_Arc': '{:.2f}', 'diff_Arc(%)': '{:.2f}',
 | 
						|
                'last_TruthfulQA': '{:.2f}', 'diff_TruthfulQA(%)': '{:.2f}', 'last_Winogrande': '{:.2f}', 'diff_Winogrande(%)': '{:.2f}'}
 | 
						|
 | 
						|
        latest_csv.drop('Index', axis=1, inplace=True)
 | 
						|
 | 
						|
        styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=3.0, is_last=True), subset=subset1)
 | 
						|
        for task in ['Arc', 'TruthfulQA', 'Winogrande']:
 | 
						|
            styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=highlight_threshold, is_last=False), subset=[f'{task}_diff_FP16(%)'])
 | 
						|
        
 | 
						|
        # add css style to restrict width and wrap text
 | 
						|
        styled_df.set_table_styles([{
 | 
						|
            'selector': 'th, td',
 | 
						|
            'props': [('max-width', '88px'), ('word-wrap', 'break-word')]
 | 
						|
        }], overwrite=False)
 | 
						|
        
 | 
						|
        html_output = styled_df.set_table_attributes("border=1").to_html()
 | 
						|
 | 
						|
        with open(daily_html, 'w') as f:
 | 
						|
            f.write(html_output)
 | 
						|
    else:
 | 
						|
        latest_csv.to_html(daily_html)
 | 
						|
 | 
						|
    if args.baseline_path and not diffs_within_normal_range:
 | 
						|
        print("The diffs are outside the normal range: %" + str(highlight_threshold))
 | 
						|
        return 1 
 | 
						|
    return 0
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    sys.exit(main())
 |