ipex-llm/python/llm/example/GPU
2024-10-31 15:59:40 +08:00
..
Applications Upgrade to python 3.11 (#10711) 2024-04-09 17:41:17 +08:00
Deepspeed-AutoTP feat: change oneccl to internal (#12296) 2024-10-31 09:51:43 +08:00
Deepspeed-AutoTP-FastAPI enable inference mode for deepspeed tp serving (#11742) 2024-08-08 14:38:30 +08:00
HuggingFace Update AWQ and GPTQ GPU example (#12300) 2024-10-31 09:35:31 +08:00
LangChain add langchain vllm interface (#11121) 2024-05-24 17:19:27 +08:00
Lightweight-Serving Support lightweight-serving glm-4v-9b (#11994) 2024-09-05 09:25:08 +08:00
LlamaIndex Update llamaindex examples (#11940) 2024-08-28 14:03:44 +08:00
LLM-Finetuning updated transformers & accelerate requirements (#12301) 2024-10-31 15:59:40 +08:00
Long-Context Remove oneAPI pip install command in related examples (#11030) 2024-05-16 10:46:29 +08:00
Lookahead/llama2 Add lookahead GPU example (#10785) 2024-04-17 17:41:55 +08:00
ModelScope-Models Remove oneAPI pip install command in related examples (#11030) 2024-05-16 10:46:29 +08:00
Pipeline-Parallel-Inference Support pipeline parallel for glm-4v (#11545) 2024-07-11 16:06:06 +08:00
Pipeline-Parallel-Serving Add lightweight serving and support tgi parameter (#11600) 2024-07-19 13:15:56 +08:00
PyTorch-Models Add Qwen2-VL gpu example (#12135) 2024-10-11 18:25:23 +08:00
Speculative-Decoding Update Eagle example to Eagle2+ipex-llm integration (#11717) 2024-10-16 23:16:14 -07:00
vLLM-Serving Enable vllm multimodal minicpm-v-2-6 (#12074) 2024-09-13 13:28:35 +08:00
README.md Add lightweight serving and support tgi parameter (#11600) 2024-07-19 13:15:56 +08:00

IPEX-LLM Examples on Intel GPU

This folder contains examples of running IPEX-LLM on Intel GPU:

  • Applications: running LLM applications (such as autogen) on IPEX-LLM
  • HuggingFace: running HuggingFace models on IPEX-LLM (using the standard AutoModel APIs), including language models and multimodal models.
  • LLM-Finetuning: running finetuning (such as LoRA, QLoRA, QA-LoRA, etc) using IPEX-LLM on Intel GPUs
  • vLLM-Serving: running vLLM serving framework on intel GPUs (with IPEX-LLM low-bit optimized models)
  • Deepspeed-AutoTP: running distributed inference using DeepSpeed AutoTP (with IPEX-LLM low-bit optimized models) on Intel GPUs
  • Deepspeed-AutoTP-FastAPI: running distributed inference using DeepSpeed AutoTP and start serving with FastAPI(with IPEX-LLM low-bit optimized models) on Intel GPUs
  • Pipeline-Parallel-Inference: running IPEX-LLM optimized low-bit model vertically partitioned on multiple Intel GPUs
  • Pipeline-Parallel-Serving: running IPEX-LLM serving with FastAPI on multiple Intel GPUs in pipeline parallel fasion
  • Lightweight-Serving: running IPEX-LLM serving with FastAPI on one Intel GPU In a lightweight way
  • LangChain: running LangChain applications on IPEX-LLM
  • PyTorch-Models: running any PyTorch model on IPEX-LLM (with "one-line code change")
  • Speculative-Decoding: running any Hugging Face Transformers model with self-speculative decoding on Intel GPUs
  • ModelScope-Models: running ModelScope model with IPEX-LLM on Intel GPUs
  • Long-Context: running long-context generation with IPEX-LLM on Intel Arc™ A770 Graphics.

System Support

1. Linux:

Hardware:

  • Intel Arc™ A-Series Graphics
  • Intel Data Center GPU Flex Series
  • Intel Data Center GPU Max Series

Operating System:

  • Ubuntu 20.04 or later (Ubuntu 22.04 is preferred)

2. Windows

Hardware:

  • Intel iGPU and dGPU

Operating System:

  • Windows 10/11, with or without WSL

Requirements

To apply Intel GPU acceleration, therere several steps for tools installation and environment preparation. See the GPU installation guide for mode details.