ipex-llm/python/llm/src/ipex_llm/transformers/models/llama.py
Yuwen Hu 9d65dcd7ef
Fix deepseek coder with linear rope type support on GPU (#12709)
* Fix deepseek coder with linear rope type

* Style fix

* Move to optimize_pre

* Small fix

* Small fix

* Small fix to not affect other cases

* Style fixes

* Update function name

* Small fix

* Small fix

* Small fix

* Fix for low transformers version first

* Style fix

* Small fix
2025-01-15 21:12:34 +08:00

206 lines
8.9 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
# which is licensed under Apache License 2.0:
#
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from typing import Optional, Tuple, Union
from transformers.cache_utils import Cache
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.models.llama.modeling_llama import LlamaModel, LlamaAttention
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
from ipex_llm.transformers.models.common import merge_qkv_base
from ipex_llm.transformers.models.common import scaled_dot_product_attention
from ipex_llm.transformers.models.utils import make_cache_contiguous_inplaced
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
from ipex_llm.transformers.models.utils import should_use_compresskv, is_enough_kv_cache_room_4_36
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache
from ipex_llm.transformers.kv import DynamicCompressCache, DynamicCompressFp8Cache
def llama_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
# IPEX-LLM OPT start: kv cache and quantize kv cache
inputs = input_ids if input_ids is not None else inputs_embeds
use_cache = use_cache if use_cache is not None else self.config.use_cache
use_cache = True if inputs.device.type == "xpu" else use_cache
use_quantize_kv = use_quantize_kv_cache(
self.layers[0].mlp.down_proj, inputs,
self.config.num_attention_heads, self.config.num_key_value_heads
)
use_compresskv = should_use_compresskv(inputs, inputs.shape[1]) or \
isinstance(past_key_values, DynamicCompressCache)
# disable llama3.2 1b for prefill performance and output quality
use_compresskv = use_compresskv and self.config.hidden_size != 2048
if use_cache:
if use_compresskv and not isinstance(past_key_values, DynamicCompressCache):
if use_quantize_kv:
past_key_values = DynamicCompressFp8Cache.from_legacy_cache(past_key_values)
else:
past_key_values = DynamicCompressCache.from_legacy_cache(past_key_values)
elif use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache):
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
elif (
not use_quantize_kv
and not use_compresskv
and not isinstance(past_key_values, DynamicNormalCache)
):
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
# IPEX-LLM OPT end
# `cache_position` is required after transformers 4.38
if cache_position is not None:
kwargs = {"cache_position": cache_position}
else:
kwargs = {}
return LlamaModel.forward(
self=self,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs
)
def merge_qkv(module: torch.nn.Module):
merge_qkv_base(module, LlamaAttention)
def pre_compute_inv_freq(module: torch.nn.Module):
if module.__class__.__name__ == "LlamaLinearScalingRotaryEmbedding":
if hasattr(module, "scaling_factor"):
module.register_buffer("inv_freq_scaled", None, persistent=False)
module.inv_freq_scaled = module.inv_freq / module.scaling_factor
def llama_attention_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]]=None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
qkv = self.qkv_proj(hidden_states)
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_key_value_heads,
self.num_key_value_heads], dim=1)
kv_seq_len = key_states.shape[-2]
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
if query_states.device.type == "xpu":
import xe_addons
if hasattr(self, "rotary_emb"):
# transformers < 4.46
if hasattr(self.rotary_emb, "inv_freq_scaled"):
xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq_scaled, position_ids,
query_states, key_states)
else:
xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
query_states, key_states)
else:
# transformers >= 4.46
cos, sin = position_embeddings
make_cache_contiguous_inplaced(cos, sin)
xe_addons.rotary_half_with_cache_inplaced(query_states, key_states, cos, sin)
else:
if position_embeddings is None:
if isinstance(getattr(self.rotary_emb, "cos_cached", None), torch.Tensor):
# transformers < 4.38
cos, sin = self.rotary_emb(value_states, kv_seq_len)
else:
# transformers >= 4.38
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids)
if past_key_value is not None:
# [CompressKV]
if isinstance(past_key_value, DynamicCompressCache):
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, q_len)
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx,
query_states, attention_mask, self.num_key_value_groups,
self.config, enough_kv_room, 256)
else:
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, None)
attn_weights = None
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == key_states.size(2)
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value