* Fix deepseek coder with linear rope type * Style fix * Move to optimize_pre * Small fix * Small fix * Small fix to not affect other cases * Style fixes * Update function name * Small fix * Small fix * Small fix * Fix for low transformers version first * Style fix * Small fix
206 lines
8.9 KiB
Python
206 lines
8.9 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# Some parts of this file is adapted from
|
|
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
|
# which is licensed under Apache License 2.0:
|
|
#
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import torch
|
|
|
|
from typing import Optional, Tuple, Union
|
|
from transformers.cache_utils import Cache
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
|
from transformers.models.llama.modeling_llama import LlamaModel, LlamaAttention
|
|
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
|
|
|
|
from ipex_llm.transformers.models.common import merge_qkv_base
|
|
from ipex_llm.transformers.models.common import scaled_dot_product_attention
|
|
from ipex_llm.transformers.models.utils import make_cache_contiguous_inplaced
|
|
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
|
|
from ipex_llm.transformers.models.utils import should_use_compresskv, is_enough_kv_cache_room_4_36
|
|
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache
|
|
from ipex_llm.transformers.kv import DynamicCompressCache, DynamicCompressFp8Cache
|
|
|
|
|
|
def llama_model_forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Cache] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
# IPEX-LLM OPT start: kv cache and quantize kv cache
|
|
inputs = input_ids if input_ids is not None else inputs_embeds
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
use_cache = True if inputs.device.type == "xpu" else use_cache
|
|
use_quantize_kv = use_quantize_kv_cache(
|
|
self.layers[0].mlp.down_proj, inputs,
|
|
self.config.num_attention_heads, self.config.num_key_value_heads
|
|
)
|
|
use_compresskv = should_use_compresskv(inputs, inputs.shape[1]) or \
|
|
isinstance(past_key_values, DynamicCompressCache)
|
|
# disable llama3.2 1b for prefill performance and output quality
|
|
use_compresskv = use_compresskv and self.config.hidden_size != 2048
|
|
if use_cache:
|
|
if use_compresskv and not isinstance(past_key_values, DynamicCompressCache):
|
|
if use_quantize_kv:
|
|
past_key_values = DynamicCompressFp8Cache.from_legacy_cache(past_key_values)
|
|
else:
|
|
past_key_values = DynamicCompressCache.from_legacy_cache(past_key_values)
|
|
elif use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache):
|
|
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
|
|
elif (
|
|
not use_quantize_kv
|
|
and not use_compresskv
|
|
and not isinstance(past_key_values, DynamicNormalCache)
|
|
):
|
|
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
|
|
# IPEX-LLM OPT end
|
|
|
|
# `cache_position` is required after transformers 4.38
|
|
if cache_position is not None:
|
|
kwargs = {"cache_position": cache_position}
|
|
else:
|
|
kwargs = {}
|
|
|
|
return LlamaModel.forward(
|
|
self=self,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
**kwargs
|
|
)
|
|
|
|
|
|
def merge_qkv(module: torch.nn.Module):
|
|
merge_qkv_base(module, LlamaAttention)
|
|
|
|
|
|
def pre_compute_inv_freq(module: torch.nn.Module):
|
|
if module.__class__.__name__ == "LlamaLinearScalingRotaryEmbedding":
|
|
if hasattr(module, "scaling_factor"):
|
|
module.register_buffer("inv_freq_scaled", None, persistent=False)
|
|
module.inv_freq_scaled = module.inv_freq / module.scaling_factor
|
|
|
|
|
|
def llama_attention_forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]]=None,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
qkv = self.qkv_proj(hidden_states)
|
|
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
|
qkv = qkv.transpose(1, 2)
|
|
query_states, key_states, value_states = qkv.split([self.num_heads,
|
|
self.num_key_value_heads,
|
|
self.num_key_value_heads], dim=1)
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
|
|
|
if query_states.device.type == "xpu":
|
|
import xe_addons
|
|
if hasattr(self, "rotary_emb"):
|
|
# transformers < 4.46
|
|
if hasattr(self.rotary_emb, "inv_freq_scaled"):
|
|
xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq_scaled, position_ids,
|
|
query_states, key_states)
|
|
else:
|
|
xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
|
|
query_states, key_states)
|
|
else:
|
|
# transformers >= 4.46
|
|
cos, sin = position_embeddings
|
|
make_cache_contiguous_inplaced(cos, sin)
|
|
xe_addons.rotary_half_with_cache_inplaced(query_states, key_states, cos, sin)
|
|
else:
|
|
if position_embeddings is None:
|
|
if isinstance(getattr(self.rotary_emb, "cos_cached", None), torch.Tensor):
|
|
# transformers < 4.38
|
|
cos, sin = self.rotary_emb(value_states, kv_seq_len)
|
|
else:
|
|
# transformers >= 4.38
|
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
|
else:
|
|
cos, sin = position_embeddings
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
|
cos, sin, position_ids)
|
|
|
|
if past_key_value is not None:
|
|
# [CompressKV]
|
|
if isinstance(past_key_value, DynamicCompressCache):
|
|
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, q_len)
|
|
key_states, value_states = past_key_value.update(
|
|
key_states, value_states, self.layer_idx,
|
|
query_states, attention_mask, self.num_key_value_groups,
|
|
self.config, enough_kv_room, 256)
|
|
else:
|
|
key_states, value_states = past_key_value.update(key_states, value_states,
|
|
self.layer_idx, None)
|
|
|
|
attn_weights = None
|
|
attn_output = scaled_dot_product_attention(
|
|
query_states, key_states, value_states,
|
|
attention_mask, q_len == key_states.size(2)
|
|
)
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
attn_output = attn_output.reshape(bsz, q_len, -1)
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|