* deprecate BigDLNativeTransformers and add specific LMEmbedding method * deprecate and add LM methods for langchain llms * add native params to native langchain * new imple for embedding * move ut from bigdlnative to casual llm * rename embeddings api and examples update align with usage updating * docqa example hot-fix * add more api docs * add langchain ut for starcoder * support model_kwargs for transformer methods when calling causalLM and add ut * ut fix for transformers embedding * update for langchain causal supporting transformers * remove model_family in readme doc * add model_families params to support more models * update api docs and remove chatglm embeddings for now * remove chatglm embeddings in examples * new refactor for ut to add bloom and transformers llama ut * disable llama transformers embedding ut
		
			
				
	
	
		
			98 lines
		
	
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			98 lines
		
	
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
from bigdl.llm.langchain.embeddings import *
 | 
						|
from bigdl.llm.langchain.llms import *
 | 
						|
import pytest
 | 
						|
from unittest import TestCase
 | 
						|
import os
 | 
						|
 | 
						|
 | 
						|
class Test_Models_Basics(TestCase):
 | 
						|
    def setUp(self):
 | 
						|
        self.llama_model_path = os.environ.get('LLAMA_INT4_CKPT_PATH')
 | 
						|
        self.bloom_model_path = os.environ.get('BLOOM_INT4_CKPT_PATH')
 | 
						|
        self.gptneox_model_path = os.environ.get('GPTNEOX_INT4_CKPT_PATH')
 | 
						|
        self.starcoder_model_path = os.environ.get('STARCODER_INT4_CKPT_PATH')
 | 
						|
        thread_num = os.environ.get('THREAD_NUM')
 | 
						|
        if thread_num is not None:
 | 
						|
            self.n_threads = int(thread_num)
 | 
						|
        else:
 | 
						|
            self.n_threads = 2         
 | 
						|
 | 
						|
        
 | 
						|
    def test_langchain_llm_embedding_llama(self):
 | 
						|
        bigdl_embeddings = LlamaEmbeddings(
 | 
						|
            model_path=self.llama_model_path)
 | 
						|
        text = "This is a test document."
 | 
						|
        query_result = bigdl_embeddings.embed_query(text)
 | 
						|
        doc_result = bigdl_embeddings.embed_documents([text])
 | 
						|
    
 | 
						|
    def test_langchain_llm_embedding_gptneox(self):
 | 
						|
        bigdl_embeddings = GptneoxEmbeddings(
 | 
						|
            model_path=self.gptneox_model_path)
 | 
						|
        text = "This is a test document."
 | 
						|
        query_result = bigdl_embeddings.embed_query(text)
 | 
						|
        doc_result = bigdl_embeddings.embed_documents([text])
 | 
						|
 | 
						|
    def test_langchain_llm_embedding_bloom(self):
 | 
						|
        bigdl_embeddings = BloomEmbeddings(
 | 
						|
            model_path=self.bloom_model_path)
 | 
						|
        text = "This is a test document."
 | 
						|
        query_result = bigdl_embeddings.embed_query(text)
 | 
						|
        doc_result = bigdl_embeddings.embed_documents([text])
 | 
						|
 | 
						|
    def test_langchain_llm_embedding_starcoder(self):
 | 
						|
        bigdl_embeddings = StarcoderEmbeddings(
 | 
						|
            model_path=self.starcoder_model_path)
 | 
						|
        text = "This is a test document."
 | 
						|
        query_result = bigdl_embeddings.embed_query(text)
 | 
						|
        doc_result = bigdl_embeddings.embed_documents([text])
 | 
						|
        
 | 
						|
    def test_langchain_llm_llama(self):
 | 
						|
        llm = LlamaLLM(
 | 
						|
            model_path=self.llama_model_path,
 | 
						|
            max_tokens=32,
 | 
						|
            n_threads=self.n_threads)
 | 
						|
        question = "What is AI?"
 | 
						|
        result = llm(question)
 | 
						|
        
 | 
						|
    def test_langchain_llm_gptneox(self):
 | 
						|
        llm = GptneoxLLM(
 | 
						|
            model_path=self.gptneox_model_path,
 | 
						|
            max_tokens=32,
 | 
						|
            n_threads=self.n_threads)
 | 
						|
        question = "What is AI?"
 | 
						|
        result = llm(question)
 | 
						|
        
 | 
						|
    def test_langchain_llm_bloom(self):
 | 
						|
        llm = BloomLLM(
 | 
						|
            model_path=self.bloom_model_path,
 | 
						|
            max_tokens=32,
 | 
						|
            n_threads=self.n_threads)
 | 
						|
        question = "What is AI?"
 | 
						|
        result = llm(question)
 | 
						|
 | 
						|
    def test_langchain_llm_starcoder(self):
 | 
						|
        llm = StarcoderLLM(
 | 
						|
            model_path=self.starcoder_model_path,
 | 
						|
            max_tokens=32,
 | 
						|
            n_threads=self.n_threads)
 | 
						|
        question = "What is AI?"
 | 
						|
        result = llm(question)
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    pytest.main([__file__])
 |