* Rename bigdl/llm to ipex_llm * rm python/llm/src/bigdl * from bigdl.llm to from ipex_llm
		
			
				
	
	
		
			249 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			249 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
# this code is copied from llama2 example test, and added performance test
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import gc
 | 
						|
import traceback
 | 
						|
import threading
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from datetime import date
 | 
						|
 | 
						|
import os
 | 
						|
current_dir = os.path.dirname(os.path.realpath(__file__))
 | 
						|
benchmark_util_path = os.path.join(current_dir, '..')
 | 
						|
import sys
 | 
						|
sys.path.append(benchmark_util_path)
 | 
						|
from benchmark_util import BenchmarkWrapper
 | 
						|
from ipex_llm.utils.common.log4Error import invalidInputError
 | 
						|
 | 
						|
LLAMA_IDS = ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
 | 
						|
             'meta-llama/Llama-2-70b-chat-hf','decapoda-research/llama-7b-hf',
 | 
						|
             'decapoda-research/llama-65b-hf','lmsys/vicuna-7b-v1.5',
 | 
						|
             'lmsys/vicuna-13b-v1.3','project-baize/merged-baize-30b']
 | 
						|
 | 
						|
CHATGLM_IDS = ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b', 'THUDM/chatglm3-6b']
 | 
						|
 | 
						|
LLAVA_IDS = ['liuhaotian/llava-v1.5-7b']
 | 
						|
 | 
						|
results = []
 | 
						|
excludes = []
 | 
						|
 | 
						|
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False):
 | 
						|
    # TODO: make a parameter
 | 
						|
    result= {}
 | 
						|
    if test_api == 'transformer_int4':
 | 
						|
        result = run_transformer_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
 | 
						|
    elif test_api == 'transformer_int4_gpu':
 | 
						|
        result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
 | 
						|
 | 
						|
 | 
						|
    for in_out_pair in in_out_pairs:
 | 
						|
        if result and result[in_out_pair]:
 | 
						|
            results.append([repo_id,
 | 
						|
                            round(np.mean(result[in_out_pair], axis=0)[0]*1000.0, 2),
 | 
						|
                            round(np.mean(result[in_out_pair], axis=0)[1]*1000.0, 2),
 | 
						|
                            round(np.mean(result[in_out_pair], axis=0)[2]*1000.0, 2),
 | 
						|
                            in_out_pair,
 | 
						|
                            f'{int(np.mean(result[in_out_pair], axis=0)[3])}' +
 | 
						|
                            f'-{int(np.mean(result[in_out_pair], axis=0)[4])}',
 | 
						|
                            num_beams,
 | 
						|
                            low_bit,
 | 
						|
                            cpu_embedding if 'win' in test_api else 'N/A',
 | 
						|
                            result[in_out_pair][-1][5] if 'int4_gpu' in test_api else 'N/A']) # currently only peak mem for win gpu is caught here
 | 
						|
 | 
						|
def get_model_path(repo_id, local_model_hub):
 | 
						|
    if local_model_hub:
 | 
						|
        repo_model_name = repo_id.split("/")[1]
 | 
						|
        local_model_path = local_model_hub + os.path.sep + repo_model_name
 | 
						|
        invalidInputError(os.path.isdir(local_model_path),
 | 
						|
                          local_model_path + " not exists!, Please check your models' folder.")
 | 
						|
        return local_model_path
 | 
						|
    else:
 | 
						|
        return repo_id
 | 
						|
 | 
						|
def run_transformer_int4(repo_id,
 | 
						|
                         local_model_hub,
 | 
						|
                         in_out_pairs,
 | 
						|
                         warm_up,
 | 
						|
                         num_trials,
 | 
						|
                         num_beams,
 | 
						|
                         low_bit):
 | 
						|
    from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
 | 
						|
    from transformers import AutoTokenizer, LlamaTokenizer
 | 
						|
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype='auto').eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
 | 
						|
                                                     use_cache=True).eval()
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
 | 
						|
                                                     use_cache=True).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    end = time.perf_counter()
 | 
						|
    print(">> loading of model costs {}s".format(end - st))
 | 
						|
 | 
						|
    model = BenchmarkWrapper(model)
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode():
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            in_out_len = in_out.split("-")
 | 
						|
            in_len = int(in_out_len[0])
 | 
						|
            out_len = int(in_out_len[1])
 | 
						|
            i = 0
 | 
						|
            with open("prompt/stress_test.txt", 'r') as file:
 | 
						|
                for input_str in file:
 | 
						|
                    # As different tokenizer has different encodings,
 | 
						|
                    # slice the input_ids to ensure the prompt length is required length.
 | 
						|
                    input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
                    input_ids = input_ids[:, :in_len]
 | 
						|
                    true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
                    input_ids = tokenizer.encode(true_str, return_tensors="pt")
 | 
						|
                    actual_in_len = input_ids.shape[1]
 | 
						|
                    result[in_out] = []
 | 
						|
                    st = time.perf_counter()
 | 
						|
                    output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                                num_beams=num_beams)
 | 
						|
                    end = time.perf_counter()
 | 
						|
                    print("model generate cost: " + str(end - st))
 | 
						|
                    output = tokenizer.batch_decode(output_ids)
 | 
						|
                    print(output[0])
 | 
						|
                    actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                    if i >= warm_up:
 | 
						|
                        result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
						|
                                            actual_in_len, actual_out_len])
 | 
						|
                    i += 1
 | 
						|
                    if i >= warm_up+num_trials:
 | 
						|
                        break
 | 
						|
 | 
						|
    return result
 | 
						|
 | 
						|
def run_transformer_int4_gpu(repo_id,
 | 
						|
                             local_model_hub,
 | 
						|
                             in_out_pairs,
 | 
						|
                             warm_up,
 | 
						|
                             num_trials,
 | 
						|
                             num_beams,
 | 
						|
                             low_bit):
 | 
						|
    from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
 | 
						|
    from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
 | 
						|
    import intel_extension_for_pytorch as ipex
 | 
						|
    reserved_mem_list = []
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
						|
                                          trust_remote_code=True, use_cache=True).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
 | 
						|
                                                     use_cache=True).eval()
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
 | 
						|
                                                     trust_remote_code=True, use_cache=True).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
        if isinstance(model, GPTJForCausalLM):
 | 
						|
            # For gpt-j model family, this optimization can provide a better performance.
 | 
						|
            model = ipex.optimize(model.eval(), inplace=True)
 | 
						|
    end = time.perf_counter()
 | 
						|
    print(">> loading of model costs {}s".format(end - st))
 | 
						|
    reserved_mem_list.append(torch.xpu.memory.memory_reserved()/(1024**3))
 | 
						|
 | 
						|
    model = BenchmarkWrapper(model)
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode():
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            in_out_len = in_out.split("-")
 | 
						|
            in_len = int(in_out_len[0])
 | 
						|
            out_len = int(in_out_len[1])
 | 
						|
            i = 0
 | 
						|
            with open("prompt/stress_test.txt", 'r') as file:
 | 
						|
                for input_str in file:
 | 
						|
                    # As different tokenizer has different encodings,
 | 
						|
                    # slice the input_ids to ensure the prompt length is required length.
 | 
						|
                    input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
                    input_ids = input_ids[:, :in_len]
 | 
						|
                    true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
                    input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
 | 
						|
                    actual_in_len = input_ids.shape[1]
 | 
						|
                    result[in_out] = []
 | 
						|
                    st = time.perf_counter()
 | 
						|
                    output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                                num_beams=num_beams)
 | 
						|
                    torch.xpu.synchronize()
 | 
						|
                    end = time.perf_counter()
 | 
						|
                    reserved_mem_list.append(torch.xpu.memory.memory_reserved()/(1024**3))
 | 
						|
                    gpu_peak_mem = max(reserved_mem_list) # always keep the peak gpu mem at current stage
 | 
						|
                    output_ids = output_ids.cpu()
 | 
						|
                    print("model generate cost: " + str(end - st))
 | 
						|
                    output = tokenizer.batch_decode(output_ids)
 | 
						|
                    print(output[0])
 | 
						|
                    actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                    if i >= warm_up:
 | 
						|
                        result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
						|
                                            actual_in_len, actual_out_len, gpu_peak_mem])
 | 
						|
                    i += 1
 | 
						|
                    if i >= warm_up+num_trials:
 | 
						|
                        break
 | 
						|
    model.to('cpu')
 | 
						|
    torch.xpu.synchronize()
 | 
						|
    torch.xpu.empty_cache()
 | 
						|
    del model
 | 
						|
    gc.collect()
 | 
						|
    return result
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    from omegaconf import OmegaConf
 | 
						|
    conf = OmegaConf.load(f'{current_dir}/config.yaml')
 | 
						|
    today = date.today()
 | 
						|
    if 'exclude' in conf:
 | 
						|
        excludes = conf['exclude']
 | 
						|
    
 | 
						|
    import pandas as pd
 | 
						|
    for api in conf.test_api:
 | 
						|
        for model in conf.repo_id:
 | 
						|
            in_out_pairs = conf['in_out_pairs'].copy()
 | 
						|
            if excludes:
 | 
						|
                for in_out in conf['in_out_pairs']:
 | 
						|
                    model_id_input = model + ':' + in_out.split('-')[0]
 | 
						|
                    if model_id_input in excludes:
 | 
						|
                        in_out_pairs.remove(in_out)
 | 
						|
            run_model(model, api, in_out_pairs, conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'],
 | 
						|
                      conf['low_bit'], conf['cpu_embedding'])
 | 
						|
        df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
 | 
						|
                                            'input/output tokens', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding', 
 | 
						|
                                            'peak mem (GB)'])
 | 
						|
 | 
						|
        df.to_csv(f'{current_dir}/{api}-results-{today}.csv')
 | 
						|
        results = []
 |