ipex-llm/python/llm/src/ipex_llm/transformers/models/llama.py

1921 lines
88 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/v4.31.0/src/transformers/models/llama/modeling_llama.py
# which is licensed under Apache License 2.0:
#
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import warnings
import importlib
import torch.nn as nn
from typing import Optional, Tuple, Union, List
import math
import os
import torch.nn.functional as F
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
from ipex_llm.transformers.models.utils import SILU
from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
restore_fp8_kv_cache, use_quantize_kv_cache
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_31, \
apply_rotary_pos_emb, is_enough_kv_cache_room_4_36
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
from ipex_llm.transformers.models.utils import use_flash_attention, use_esimd_sdp
from ipex_llm.transformers.models.utils import mlp_fusion_check, fp16_fusion_check
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.models.llama.modeling_llama import LlamaModel
from ipex_llm.transformers.low_bit_linear import SYM_INT4, FP8E5, IQ2_XXS, FP4
from ipex_llm.ggml.quantize import ggml_tensor_qtype
from ipex_llm.utils.common import invalidInputError
try:
from transformers.cache_utils import Cache, DynamicCache
except ImportError:
Cache = Tuple[torch.Tensor]
from transformers import logging
logger = logging.get_logger(__name__)
def llama_decoding_fast_path_qtype_check(proj):
# IQ2_XXS only can be used in Llama-like model
qtype = getattr(proj, "qtype", None)
return qtype in [SYM_INT4, FP8E5, IQ2_XXS, FP4]
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states
go from (batch, num_key_value_heads, seqlen, head_dim) to
(batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads,
n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
KV_CACHE_ALLOC_BLOCK_LENGTH = os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256)
_ipex_version = None
def get_ipex_version():
global _ipex_version
if _ipex_version is not None:
return _ipex_version
import intel_extension_for_pytorch as ipex
_ipex_version = ipex.__version__
return _ipex_version
def llama_model_forward_4_36(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
from ipex_llm.transformers.kv import DynamicFp8Cache
use_cache = use_cache if use_cache is not None else self.config.use_cache
if use_cache and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input_ids):
if not isinstance(past_key_values, DynamicFp8Cache):
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
return llama_model_forward_4_36_internal(
self=self,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
def llama_rms_norm_forward(self, hidden_states):
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
import linear_q4_0
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
output = linear_q4_0.rms_norm(self.weight, x_2d, self.variance_epsilon)
if 1 < x_2d.size(0) <= 64: # may use XMX, need copy
output = output.clone()
return output.reshape(hidden_states.shape)
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def llama_mlp_forward(
self,
x: torch.Tensor,
residual=None
) -> torch.Tensor:
x_2d = x.view(-1, x.shape[-1])
bsz, hidden_size = x_2d.shape
qtype = getattr(self.gate_proj, "qtype", None)
if mlp_fusion_check(x_2d, qtype, self.training) and not self.down_proj.enable_xetla:
import linear_q4_0
if not x_2d.is_contiguous():
x_2d = x_2d.contiguous()
out = self.down_proj(linear_q4_0.mlp_forward_xpu(
x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len,
SILU, qtype
))
if residual is not None:
return out + residual
else:
return out
elif fp16_fusion_check(self.gate_proj, x, self.training) and \
hidden_size == 4096 and bsz == 1:
hidden_states1 = torch.ops.torch_ipex.mm_silu(x, self.gate_proj.weight)
hidden_states = torch.ops.torch_ipex.mm_resmul(
x, self.up_proj.weight, hidden_states1
)
if residual is None:
hidden_states = torch.matmul(hidden_states, self.down_proj.weight)
else:
attn_output = torch.addmm(
residual.flatten(0, -2),
hidden_states.flatten(0, -2),
self.down_proj.weight,
beta=1,
)
hidden_states = attn_output.view(x.shape)
return hidden_states
else:
a = self.act_fn(self.gate_proj(x))
b = self.up_proj(x)
c = a * b
del a, b
out = self.down_proj(c)
if residual is not None:
return out + residual
else:
return out
def should_use_fuse_rope(self, query_states, position_ids):
use_fuse_rope = query_states.device.type == "xpu"
use_fuse_rope = use_fuse_rope and not (self.training and query_states.requires_grad)
use_fuse_rope = use_fuse_rope and self.config.rope_scaling is None
use_fuse_rope = use_fuse_rope and position_ids is not None
return use_fuse_rope
# Only for xpu and training
def should_use_fast_rope(self, query_states, position_ids):
use_fuse_rope = query_states.device.type == "xpu"
use_fuse_rope = use_fuse_rope and (self.training or query_states.requires_grad)
use_fuse_rope = use_fuse_rope and self.config.rope_scaling is None
use_fuse_rope = use_fuse_rope and position_ids is not None
return use_fuse_rope
def llama_decoder_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37."
"Please make sure use `attention_mask` instead.`"
)
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
# add residual into mlp
hidden_states = self.mlp(hidden_states, residual)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
def fuse_qkv_weight(q_proj, k_proj, v_proj):
weight_size = q_proj.out_len * q_proj.in_len // 2
zeros_size = q_proj.in_len * q_proj.out_len // 2 // 64
zeros_end = weight_size + zeros_size
weight_byte_shape = (q_proj.in_len//2, q_proj.out_len)
zeros_byte_shape = (q_proj.in_len//64, q_proj.out_len//2)
scales_byte_shape = (q_proj.in_len//64, q_proj.out_len*2)
qweight = torch.concat([q_proj.weight.data[:weight_size].reshape(weight_byte_shape),
k_proj.weight.data[:weight_size].reshape(weight_byte_shape),
v_proj.weight.data[:weight_size].reshape(weight_byte_shape),
], dim=-1).reshape(-1)
qzeros = torch.concat([q_proj.weight.data[weight_size:zeros_end].reshape(zeros_byte_shape),
k_proj.weight.data[weight_size:zeros_end].reshape(zeros_byte_shape),
v_proj.weight.data[weight_size:zeros_end].reshape(zeros_byte_shape),
], dim=-1).reshape(-1)
qscales = torch.concat([q_proj.weight.data[zeros_end:].reshape(scales_byte_shape),
k_proj.weight.data[zeros_end:].reshape(scales_byte_shape),
v_proj.weight.data[zeros_end:].reshape(scales_byte_shape),
], dim=-1).reshape(-1)
q_proj.weight.data = torch.empty(0)
k_proj.weight.data = torch.empty(0)
v_proj.weight.data = torch.empty(0)
return torch.cat([qweight, qzeros, qscales], dim=0)
def should_use_mm_int4_qkv(self, device):
return device.type == "xpu" and self.q_proj.qtype == SYM_INT4 and self.q_proj.enable_xetla
def llama_attention_forward_4_31(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if use_quantize_kv_cache(self.q_proj, hidden_states):
forward_function = llama_attention_forward_4_31_quantized
else:
forward_function = llama_attention_forward_4_31_original
return forward_function(
self=self,
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
padding_mask=padding_mask,
kwargs=kwargs
)
def llama_attention_forward_4_31_quantized(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, hidden_size = hidden_states.size()
device = hidden_states.device
# for flash attention
original_dtype = hidden_states.dtype
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=q_len)
qtype_check = llama_decoding_fast_path_qtype_check(self.q_proj)
no_tp = not self.config.pretraining_tp > 1
decoding_fast_path = (no_tp and qtype_check and use_fuse_rope
and enough_kv_room and bsz * q_len == 1)
# single batch decoding fast path
# forward_qkv takes will perform QKV projection, rotary position embedding
# and save the key/value states to cache, then return query states and the
# extended key/value cache
if decoding_fast_path:
hidden_states = hidden_states.view(1, -1)
tmp_cache_k, tmp_cache_v = init_kv_cache(
bsz,
self.num_key_value_heads,
self.head_dim,
0,
1,
dtype=hidden_states.dtype,
device=device
)
import linear_q4_0
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
self.q_proj.weight,
self.k_proj.weight,
self.v_proj.weight,
position_ids,
tmp_cache_k, tmp_cache_v,
self.q_proj.weight.qtype,
self.v_proj.weight.qtype,
0,
self.head_dim,
self.rotary_emb.base,)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len,
self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
if use_fuse_rope:
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
key_states,
position_ids,
"llama")
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "llama")
if past_key_value is None:
kv_seq_len = key_states.shape[-2]
repeated_key_states = repeat_kv(key_states, self.num_key_value_groups)
repeated_value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_output, attn_weights = native_sdp(query_states, repeated_key_states,
repeated_value_states, attention_mask,
bsz, q_len, kv_seq_len,
self.head_dim, self.num_heads)
if use_cache:
k_cache, v_cache = init_fp8_kv_cache(
bsz, self.num_key_value_heads, kv_seq_len, self.head_dim,
device=query_states.device, new_layout=True
)
key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
key_states, value_states)
past_key_value = (key_states, value_states)
else:
k_cache, v_cache = past_key_value
key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
key_states, value_states, new_layout=True)
kv_seq_len = key_states.shape[-2]
past_key_value = (key_states, value_states)
if query_states.size(2) != 1 or query_states.device.type != 'xpu':
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
attention_mask,
bsz, q_len, kv_seq_len,
self.head_dim, self.num_heads)
else:
import linear_q4_0
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
attention_mask)
attn_weights = None
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp,
dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output.to(original_dtype), attn_weights, past_key_value
def llama_attention_forward_4_31_original(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, hidden_size = hidden_states.size()
device = hidden_states.device
# for flash attention
original_dtype = hidden_states.dtype
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=q_len)
qtype_check = llama_decoding_fast_path_qtype_check(self.q_proj)
no_tp = not self.config.pretraining_tp > 1
decoding_fast_path = (no_tp and qtype_check and use_fuse_rope and
enough_kv_room and bsz * q_len == 1)
decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
# single batch decoding fast path
# forward_qkv takes will perform QKV projection, rotary position embedding
# and save the key/value states to cache, then return query states and the
# extended key/value cache
if decoding_fast_path:
hidden_states = hidden_states.view(1, -1)
kv_seq_len = past_key_value[0].shape[-2]
cache_k = past_key_value[0]
cache_v = past_key_value[1]
import linear_q4_0
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
self.q_proj.weight,
self.k_proj.weight,
self.v_proj.weight,
position_ids,
cache_k, cache_v,
self.q_proj.weight.qtype,
self.v_proj.weight.qtype,
kv_seq_len,
self.head_dim,
self.rotary_emb.base,)
kv_seq_len += 1
else:
if self.config.pretraining_tp > 1:
key_value_slicing = ((self.num_key_value_heads * self.head_dim) //
self.config.pretraining_tp)
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim)
// self.config.pretraining_tp, dim=0)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i])
for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i])
for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i])
for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
if fp16_fusion_check(self.q_proj, hidden_states, self.training) and \
hidden_size == 4096:
# only use mm_qkv_out on pvc for llama-7b
if not hasattr(self, "qkv_proj_weight"):
self.qkv_proj_weight = torch.stack([self.q_proj.weight,
self.k_proj.weight,
self.v_proj.weight]).contiguous()
self.q_proj.weight.data = self.qkv_proj_weight[0, :, :]
self.k_proj.weight.data = self.qkv_proj_weight[1, :, :]
self.v_proj.weight.data = self.qkv_proj_weight[2, :, :]
torch.xpu.empty_cache()
query_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
dtype=hidden_states.dtype, device=hidden_states.device)
key_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
dtype=hidden_states.dtype, device=hidden_states.device)
value_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
dtype=hidden_states.dtype, device=hidden_states.device)
torch.ops.torch_ipex.mm_qkv_out(
hidden_states, self.qkv_proj_weight, None,
query_states, key_states, value_states
)
else:
if should_use_mm_int4_qkv(self, device):
if not hasattr(self, "qkv_proj_qweight"):
self.qkv_proj_qweight = fuse_qkv_weight(self.q_proj,
self.k_proj,
self.v_proj)
import linear_q4_0
qkv_states = linear_q4_0.mm_int4(hidden_states, self.qkv_proj_qweight)
query_states = qkv_states[:, :, :hidden_size]
key_states = qkv_states[:, :, hidden_size:2*hidden_size]
value_states = qkv_states[:, :, 2*hidden_size:]
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len,
self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
if use_fuse_rope:
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
key_states,
position_ids,
"llama")
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "llama")
if past_key_value is not None:
# reuse k, v, self_attention
cache_k = past_key_value[0]
cache_v = past_key_value[1]
if not enough_kv_room:
# allocate new
new_cache_k, new_cache_v = extend_kv_cache(
bsz,
self.num_key_value_heads, # Support GQA
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=device
)
new_cache_k[:] = cache_k
new_cache_v[:] = cache_v
cache_k = new_cache_k
cache_v = new_cache_v
key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
elif use_cache:
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
new_key_states, new_value_states = init_kv_cache(bsz,
self.num_key_value_heads,
self.head_dim,
kv_seq_len,
max_cache_length,
dtype=key_states.dtype,
device=device)
new_key_states[:] = key_states
new_value_states[:] = value_states
key_states = new_key_states
value_states = new_value_states
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if not self.training and not hidden_states.requires_grad and \
use_flash_attention(query_states, key_states, attention_mask):
attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16),
key_states.to(device, dtype=torch.float16),
value_states.to(device, dtype=torch.float16),
is_causal=True)
attn_weights = None
elif not self.training and not hidden_states.requires_grad and \
use_esimd_sdp(q_len, key_states.shape[2], self.head_dim, query_states, attention_mask):
import linear_fp16_esimd
attn_output = linear_fp16_esimd.sdp_forward(query_states,
key_states,
value_states)
attn_output = attn_output.view(query_states.shape)
attn_weights = None
else:
# otherwise, use native attention
attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
attention_mask,
bsz, q_len, kv_seq_len,
self.head_dim, self.num_heads)
attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
if attn_output.size() != attn_output_size:
invalidInputError(False,
f"`attn_output` should be of size {attn_output_size},"
f" but is {attn_output.size()}")
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp,
dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output.to(original_dtype), attn_weights, past_key_value
def llama_attention_selective_batching_forward_4_31(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# Minimize this value to reduce memory allocation.
VLLM_KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get('VLLM_KV_CACHE_ALLOC_BLOCK', 64))
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
# for flash attention
original_dtype = hidden_states.dtype
# TODO: consider this later - flash attention
# if not self.training and not hidden_states.requires_grad:
# fsdp_flag = use_flash_attention(hidden_states)
# else:
# fsdp_flag = False
# if fsdp_flag and q_len > 1:
# attention_dtype = torch.float16 # use fp16 for flash attention
# else:
# attention_dtype = original_dtype
attention_dtype = original_dtype
# TODO: decoding fast path
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
enough_kv_room = past_key_value is not None and is_enough_kv_cache_room_4_31(past_key_value[0])
qtype_check = llama_decoding_fast_path_qtype_check(self.q_proj)
no_tp = not self.config.pretraining_tp > 1
decoding_fast_path = (no_tp and qtype_check and use_fuse_rope and
bsz * q_len == 1)
decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
updated_past_key_values = []
# single batch decoding fast path
# forward_qkv takes will perform QKV projection, rotary position embedding
# and save the key/value states to cache, then return query states and the
# extended key/value cache
if decoding_fast_path:
past_k = past_key_value[0][0]
past_v = past_key_value[0][1]
kv_seq_len = past_k.shape[-2]
if not enough_kv_room:
new_cache_k, new_cache_v = extend_kv_cache(1,
self.num_key_value_heads, # Support GQA
self.head_dim,
kv_seq_len,
kv_seq_len +
VLLM_KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=past_k.dtype,
device=device)
new_cache_k[:] = past_k
new_cache_v[:] = past_v
past_k = new_cache_k
past_v = new_cache_v
hidden_states = hidden_states.view(1, -1)
import linear_q4_0
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
self.q_proj.weight,
self.k_proj.weight,
self.v_proj.weight,
position_ids,
past_k, past_v,
self.q_proj.weight.qtype,
self.v_proj.weight.qtype,
kv_seq_len,
self.head_dim,
self.rotary_emb.base,
)
kv_seq_len += 1
else:
if self.config.pretraining_tp > 1:
invalidInputError(False, f"vLLM: config.pretraining_tp > 1 not supported yet")
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len,
self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += max(kv_pair[0].shape[-2] for kv_pair in past_key_value)
if use_fuse_rope:
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
key_states,
position_ids,
"llama")
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "llama")
if past_key_value is not None:
batched_attention_output = []
# print(f"type of attention_mask is {type(attention_mask)}")
for batch in range(bsz):
enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value[batch])
past_k, past_v = past_key_value[batch]
current_kv_len = past_k.shape[-2] + 1
if not enough_kv_room:
# allocate new
new_cache_k, new_cache_v = extend_kv_cache(1,
self.num_key_value_heads,
self.head_dim,
past_k.size(2),
current_kv_len +
VLLM_KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=past_k.dtype,
device=device)
new_cache_k[:] = past_k
new_cache_v[:] = past_v
past_k = new_cache_k
past_v = new_cache_v
current_key_states = key_states[batch: batch + 1, :, :, :]
current_value_states = value_states[batch: batch + 1, :, :, :]
current_key_states, current_value_states = append_kv_cache(past_k,
past_v,
current_key_states,
current_value_states)
updated_past_key_values.append((current_key_states, current_value_states))
current_key_states = repeat_kv(current_key_states, self.num_key_value_groups)
current_value_states = repeat_kv(current_value_states, self.num_key_value_groups)
current_query_states = query_states[batch: batch + 1, :, :, :]
attn_output, attn_weights = native_sdp(current_query_states,
current_key_states,
current_value_states,
attention_mask[batch],
1,
1,
current_kv_len,
self.head_dim,
self.num_heads)
if attn_output.size() != (1, self.num_heads, 1, self.head_dim):
invalidInputError(False,
f"`attn_output` should be of size "
f"{(1, self.num_heads, 1, self.head_dim)}, but is"
f" {attn_output.size()}")
batched_attention_output.append(attn_output)
# For loop ends
# TODO: handle attention_weights later
attn_output = torch.concat(batched_attention_output, dim=0)
batched_attention_output.clear()
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
invalidInputError(False,
f"`attn_output` should be of size "
f"{(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}")
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, updated_past_key_values
# Assume always use_cache
# prefill or decoding fast path
for batch in range(bsz):
updated_past_key_values.append((key_states[batch: batch + 1, :, :, :],
value_states[batch: batch+1, :, :, :]))
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups).to(device,
dtype=attention_dtype)
value_states = repeat_kv(value_states, self.num_key_value_groups).to(device,
dtype=attention_dtype)
# Can also happens for decoding fast path
if isinstance(attention_mask, list):
# For decoding fast path
attention_mask = attention_mask[0]
attn_output, attn_weights = native_sdp(query_states,
key_states,
value_states,
attention_mask,
bsz,
q_len,
kv_seq_len,
self.head_dim,
self.num_heads)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
invalidInputError(False,
f"`attn_output` should be of size "
f"{(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}")
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output.to(original_dtype), attn_weights, updated_past_key_values
def llama_attention_forward_4_36(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
if use_quantize_kv_cache(self.q_proj, hidden_states):
forward_function = llama_attention_forward_4_36_quantized
else:
forward_function = llama_attention_forward_4_36_original
return forward_function(
self=self,
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
kwargs=kwargs
)
def llama_attention_forward_4_36_quantized(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
"Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, seq_len=q_len)
qtype_check = llama_decoding_fast_path_qtype_check(self.q_proj)
no_tp = not self.config.pretraining_tp > 1
decoding_fast_path = (no_tp and qtype_check and use_fuse_rope
and enough_kv_room and bsz * q_len == 1)
if decoding_fast_path:
hidden_states = hidden_states.view(1, -1)
tmp_cache_k, tmp_cache_v = init_kv_cache(
bsz,
self.num_key_value_heads,
self.head_dim,
0,
1,
dtype=hidden_states.dtype,
device=device
)
import linear_q4_0
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
self.q_proj.weight,
self.k_proj.weight,
self.v_proj.weight,
position_ids,
tmp_cache_k, tmp_cache_v,
self.q_proj.weight.qtype,
self.v_proj.weight.qtype,
0,
self.head_dim,
self.rotary_emb.base,)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len,
self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
invalidInputError(
False,
f"The cache structure has changed since version v4.36."
f" If you are using {self.__class__.__name__} "
f"for auto-regressive decoding with k/v caching,"
f" please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
if use_fuse_rope:
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
key_states,
position_ids,
"llama")
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "llama")
kv_seq_len = key_states.shape[-2]
if len(past_key_value.key_cache) <= self.layer_idx:
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
invalidInputError(
False,
f"Attention weights should be of size "
f"{(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
invalidInputError(
False,
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
f" but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# at inference time, for memory considerations, may not need to upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
attn_output = torch.matmul(attn_weights, value_states)
if use_cache:
cache_kwargs = None
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, cache_kwargs,
new_layout=True)
else:
cache_kwargs = None # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, cache_kwargs,
new_layout=True)
kv_seq_len = key_states.shape[-2]
if query_states.size(2) != 1 or query_states.device.type != 'xpu':
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
key_states = repeat_kv(key_states, self.num_key_value_groups)\
.to(device, dtype=query_states.dtype)
value_states = repeat_kv(value_states, self.num_key_value_groups)\
.to(device, dtype=query_states.dtype)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
attn_weights = attn_weights / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
invalidInputError(
False,
f"Attention weights should be of size"
f" {(bsz, self.num_heads, q_len, kv_seq_len)},"
f" but is {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
invalidInputError(
False,
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
f" but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# at inference time, for memory considerations, may not need to upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
attn_output = torch.matmul(attn_weights, value_states)
else:
import linear_q4_0
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
attention_mask)
attn_weights = None
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
invalidInputError(
False,
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)},"
f" but is {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size
// self.config.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i],
o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def llama_attention_forward_4_36_original(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
"Please make sure use `attention_mask` instead.`"
)
bsz, q_len, hidden_size = hidden_states.size()
device = hidden_states.device
# for flash attention
original_dtype = hidden_states.dtype
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, seq_len=q_len)
qtype_check = llama_decoding_fast_path_qtype_check(self.q_proj)
no_tp = not self.config.pretraining_tp > 1
decoding_fast_path = (no_tp and qtype_check and use_fuse_rope and
enough_kv_room and bsz * q_len == 1)
decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
# single batch decoding fast path
# forward_qkv takes will perform QKV projection, rotary position embedding
# and save the key/value states to cache, then return query states and the
# extended key/value cache
if decoding_fast_path:
hidden_states = hidden_states.view(1, -1)
cache_k = past_key_value.key_cache[self.layer_idx]
cache_v = past_key_value.value_cache[self.layer_idx]
kv_seq_len = cache_k.shape[-2]
import linear_q4_0
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
self.q_proj.weight,
self.k_proj.weight,
self.v_proj.weight,
position_ids,
cache_k, cache_v,
self.q_proj.weight.qtype,
self.v_proj.weight.qtype,
kv_seq_len,
self.head_dim,
self.rotary_emb.base,)
kv_seq_len += 1
# update past_key_value's seem_tokens and kv caches.
if self.layer_idx == 0:
past_key_value.seen_tokens = kv_seq_len
past_key_value.key_cache[self.layer_idx] = key_states
past_key_value.value_cache[self.layer_idx] = value_states
else:
if self.config.pretraining_tp > 1:
key_value_slicing = ((self.num_key_value_heads * self.head_dim) //
self.config.pretraining_tp)
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim)
// self.config.pretraining_tp, dim=0)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i])
for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i])
for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i])
for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
if fp16_fusion_check(self.q_proj, hidden_states, self.training) and \
hidden_size == 4096:
# only use mm_qkv_out on pvc for llama-7b
if not hasattr(self, "qkv_proj_weight"):
self.qkv_proj_weight = torch.stack([self.q_proj.weight,
self.k_proj.weight,
self.v_proj.weight]).contiguous()
self.q_proj.weight.data = self.qkv_proj_weight[0, :, :]
self.k_proj.weight.data = self.qkv_proj_weight[1, :, :]
self.v_proj.weight.data = self.qkv_proj_weight[2, :, :]
torch.xpu.empty_cache()
query_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
dtype=hidden_states.dtype, device=hidden_states.device)
key_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
dtype=hidden_states.dtype, device=hidden_states.device)
value_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
dtype=hidden_states.dtype, device=hidden_states.device)
torch.ops.torch_ipex.mm_qkv_out(
hidden_states, self.qkv_proj_weight, None,
query_states, key_states, value_states
)
else:
if should_use_mm_int4_qkv(self, device):
if not hasattr(self, "qkv_proj_qweight"):
self.qkv_proj_qweight = fuse_qkv_weight(self.q_proj,
self.k_proj,
self.v_proj)
import linear_q4_0
qkv_states = linear_q4_0.mm_int4(hidden_states, self.qkv_proj_qweight)
query_states = qkv_states[:, :, :hidden_size]
key_states = qkv_states[:, :, hidden_size:2*hidden_size]
value_states = qkv_states[:, :, 2*hidden_size:]
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len,
self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
invalidInputError(False,
"The cache structure has changed since version v4.36. "
f"If you are using {self.__class__.__name__} for "
"auto-regressive decodingwith k/v caching, please make sure "
"to initialize the attention class with a layer index.")
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
if use_fuse_rope:
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
key_states,
position_ids,
"llama")
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "llama")
if past_key_value is not None:
# update the number of seen tokens
if self.layer_idx == 0:
past_key_value.seen_tokens += key_states.shape[-2]
# reuse k, v, self_attention
# update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
if len(past_key_value.key_cache) <= self.layer_idx:
past_key_value.key_cache.append(key_states)
past_key_value.value_cache.append(value_states)
else:
cache_k = past_key_value.key_cache[self.layer_idx]
cache_v = past_key_value.value_cache[self.layer_idx]
if not enough_kv_room:
# allocate new
new_c_k, new_c_v = extend_kv_cache(bsz,
self.num_key_value_heads, # Support GQA
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=device)
new_c_k[:] = cache_k
new_c_v[:] = cache_v
cache_k = new_c_k
cache_v = new_c_v
key_states, value_states = append_kv_cache(cache_k,
cache_v,
key_states,
value_states)
# update past_key_value
past_key_value.key_cache[self.layer_idx] = key_states
past_key_value.value_cache[self.layer_idx] = value_states
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if not self.training and not hidden_states.requires_grad and \
use_flash_attention(query_states, key_states, attention_mask):
# now only use flash attention for first token
attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16),
key_states.to(device, dtype=torch.float16),
value_states.to(device, dtype=torch.float16),
is_causal=True)
attn_weights = None
elif not self.training and not hidden_states.requires_grad and \
use_esimd_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
import linear_fp16_esimd
attn_output = linear_fp16_esimd.sdp_forward(query_states,
key_states,
value_states)
attn_output = attn_output.view(query_states.shape)
attn_weights = None
else:
# otherwise, use native attention
attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
attention_mask,
bsz, q_len, kv_seq_len,
self.head_dim, self.num_heads)
attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
if attn_output.size() != attn_output_size:
invalidInputError(False,
f"`attn_output` should be of size {attn_output_size},"
f" but is {attn_output.size()}")
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp,
dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output.to(original_dtype), attn_weights, past_key_value
def native_sdp(query, key, value, attention_mask,
bsz, q_len, kv_seq_len, head_dim, num_heads):
attn_weights = torch.matmul(query.to(key.dtype),
key.transpose(2, 3)) / math.sqrt(head_dim)
attn_weights_size = (bsz, num_heads, q_len, kv_seq_len)
if attn_weights.size() != attn_weights_size:
invalidInputError(False,
f"Attention weights should be of size {attn_weights_size}, "
f"but is {attn_weights.size()}")
if attention_mask is not None:
attn_mask_size = (bsz, 1, q_len, kv_seq_len)
if attention_mask.size() != attn_mask_size:
invalidInputError(False,
f"Attention mask should be of size {attn_mask_size}, "
f"but is {attention_mask.size()}")
attn_weights = attn_weights + attention_mask
# at inference time, for memory considerations, may not need to upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
def llama_model_selective_batching_forward_4_31(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions is not None:
output_attentions = output_attentions
else:
output_attentions = self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
invalidInputError(False,
"You cannot specify both decoder_input_ids"
" and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
invalidInputError(False,
"You have to specify either "
"decoder_input_ids or decoder_inputs_embeds")
# seq_length_with_past = seq_length
past_key_values_length = 0
# The original position_ids in the format of [1, 1]
# However, this only applies when kv_len is the same for all the sequences
# We should set it to format of [batch, position_id]
# TODO: validate correctness
device = input_ids.device if input_ids is not None else inputs_embeds.device
if position_ids is None:
invalidInputError(False,
"vLLM: position_ids should never be None")
else:
# print(f"Original position_ids is {position_ids}")
position_ids = position_ids.view(-1, seq_length)
# print(f"after position_ids is {position_ids}")
# if past_key_values is None:
# # For prefill
# position_ids = torch.arange(0, seq_length, dtype=torch.long, device=device)
# position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
# else:
# past_key_values_length = []
# for sequence_kv in past_key_values[0]:
# key = sequence_kv[0]
# past_key_values_length.append(key.shape[-2])
# position_ids = torch.tensor(past_key_values_length, dtype=torch.long, device=device)
# position_ids = position_ids.unsqueeze(0).view(-1, 1)
if past_key_values is not None:
# past_key_values in the format of num_layers x num_seqs x 2
# TODO: this may be incorrect
past_key_values_length = past_key_values[0][0][0].shape[2]
# seq_length_with_past = seq_length_with_past + past_key_values_length
# if position_ids is None:
# device = input_ids.device if input_ids is not None else inputs_embeds.device
# # [start, end)
# position_ids = torch.arange(
# past_key_values_length, seq_length +
# past_key_values_length, dtype=torch.long, device=device
# )
# position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
# else:
# position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
if attention_mask is None:
invalidInputError(False, "attention_mask should never be None")
# print(f"attention_mask before expanding: {attention_mask}")
if past_key_values is None:
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
else:
i = 0
for attn_mask in attention_mask:
past_key_value_length = past_key_values[0][i][0].shape[2]
new_mask = self._prepare_decoder_attention_mask(
attn_mask, (1, seq_length), inputs_embeds, past_key_value_length
)
attention_mask[i] = new_mask
i += 1
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
invalidInputError(False, "gradient_checkpointing is not supported")
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) # noqa
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
# For training
def llama_attention_fast_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
use_fast_rope = should_use_fast_rope(self, hidden_states, position_ids)
# Check for inference
if use_cache and past_key_value is not None and q_len == 1:
A, past_key_value = llama_attention_forward_4_31(
self,
hidden_states,
past_key_value,
position_ids,
)
return A, None, past_key_value
if self.config.pretraining_tp > 1:
key_value_slicing = ((self.num_key_value_heads * self.head_dim) //
self.config.pretraining_tp)
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i])
for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i])
for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i])
for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
if use_fast_rope:
from ipex_llm.transformers.layers.rope_embedding import apply_fast_rope_embedding
query_states, key_states = apply_fast_rope_embedding(query_states,
key_states,
position_ids,
"llama")
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "llama")
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
attention_mask,
bsz, q_len, kv_seq_len,
self.head_dim, self.num_heads)
attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
if attn_output.size() != attn_output_size:
invalidInputError(False,
f"`attn_output` should be of size {attn_output_size},"
f" but is {attn_output.size()}")
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp,
dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def llama_model_forward_4_36_internal(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else \
self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else
self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
invalidInputError(False,
"You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_length = inputs_embeds.shape[:2]
else:
invalidInputError(False, "You have to specify either input_ids or inputs_embeds")
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length,
dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) \
else None
elif self._use_sdpa and not output_attentions:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
from transformers.models.llama.modeling_llama import \
_prepare_4d_causal_attention_mask_for_sdpa
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
else:
# 4d mask is passed through the layers
from transformers.models.llama.modeling_llama import _prepare_4d_causal_attention_mask
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
# embed positions
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing."
" Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
)
else:
# bigdl-llm changes:
curr_device = decoder_layer.input_layernorm.weight.device
if attention_mask is not None:
attention_mask = attention_mask.to(curr_device)
if position_ids is not None:
position_ids = position_ids.to(curr_device)
# bigdl-llm changes end
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache \
else next_decoder_cache
if not return_dict:
return tuple(v for v in [hidden_states, next_cache,
all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def llama_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None \
else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else
self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
invalidInputError(False,
"You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
invalidInputError(False, "You have to specify either input_ids or inputs_embeds")
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length,
dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
)
padding_mask = None
else:
if 0 in attention_mask:
padding_mask = attention_mask
else:
padding_mask = None
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing."
" Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, past_key_value, output_attentions,
padding_mask=padding_mask)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer), hidden_states, attention_mask, position_ids
)
else:
# bigdl-llm changes:
#
# Avoid moving `attention_mask`` and `position_ids`` to other devices multiple times.
#
# When the model is partitioned on two different devices using
# `accelerate`'s `dispatch``, a hook to move inputs to the correct device is
# added to each layer's `forward``, which will result in moving `attention_mask`
# and `position_ids`, which allocated on device:0, to other devices for each
# decoder layer not in device:0.
#
# To avoid this, we move `attention_mask` and `position_ids` to the device of
# the current layer before the forward call, so that the moving is only done once
# for each devices other than devie:0.
#
curr_device = decoder_layer.input_layernorm.weight.device
if attention_mask is not None:
attention_mask = attention_mask.to(curr_device)
if position_ids is not None:
position_ids = position_ids.to(curr_device)
# bigdl-llm changes end
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
padding_mask=padding_mask,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache,
all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)