* Update LangChain examples to use upstream * Update README and fix links * Update LangChain CPU examples to use upstream * Update LangChain CPU voice_assistant example * Update CPU README * Update GPU README * Remove GPU Langchain vLLM example and fix comments * Change langchain -> LangChain * Add reference for both upstream llms and embeddings * Fix comments * Fix comments * Fix comments * Fix comments * Fix comment
		
			
				
	
	
		
			75 lines
		
	
	
		
			No EOL
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			75 lines
		
	
	
		
			No EOL
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
import argparse
 | 
						|
import warnings
 | 
						|
 | 
						|
from langchain.chains import LLMChain
 | 
						|
from langchain_community.llms import IpexLLM
 | 
						|
from langchain_core.prompts import PromptTemplate
 | 
						|
 | 
						|
warnings.filterwarnings("ignore", category=UserWarning, message=".*padding_mask.*")
 | 
						|
 | 
						|
 | 
						|
def main(args):
 | 
						|
    question = args.question
 | 
						|
    model_path = args.model_path
 | 
						|
    low_bit_model_path = args.target_path
 | 
						|
    template ="""{question}"""
 | 
						|
 | 
						|
    prompt = PromptTemplate(template=template, input_variables=["question"])
 | 
						|
 | 
						|
    llm = IpexLLM.from_model_id(
 | 
						|
        model_id=model_path,
 | 
						|
        model_kwargs={
 | 
						|
            "temperature": 0,
 | 
						|
            "max_length": 64,
 | 
						|
            "trust_remote_code": True,
 | 
						|
            "device": "xpu",
 | 
						|
        },
 | 
						|
    )
 | 
						|
    llm.model.save_low_bit(low_bit_model_path)
 | 
						|
    del llm
 | 
						|
    llm_lowbit = IpexLLM.from_model_id_low_bit(
 | 
						|
        model_id=low_bit_model_path,
 | 
						|
        tokenizer_id=model_path,
 | 
						|
        # tokenizer_name=saved_lowbit_model_path,  # copy the tokenizers to saved path if you want to use it this way
 | 
						|
        model_kwargs={
 | 
						|
            "temperature": 0,
 | 
						|
            "max_length": 64,
 | 
						|
            "trust_remote_code": True,
 | 
						|
            "device": "xpu",
 | 
						|
        },
 | 
						|
    )
 | 
						|
    llm_chain = prompt | llm_lowbit
 | 
						|
 | 
						|
    output = llm_chain.invoke(question)
 | 
						|
    print("====output=====")
 | 
						|
    print(output)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser(description='TransformersLLM Langchain Chat Example')
 | 
						|
    parser.add_argument('-m','--model-path', type=str, required=True,
 | 
						|
                        help='the path to transformers model')
 | 
						|
    parser.add_argument('-t','--target-path',type=str,required=True,
 | 
						|
                        help='the path to save the low bit model')
 | 
						|
    parser.add_argument('-q', '--question', type=str, default='What is AI?',
 | 
						|
                        help='qustion you want to ask.')
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    main(args) |