ipex-llm/python/llm/src/ipex_llm/transformers/lisa.py
Ziteng Zhang ff040c8f01
LISA Finetuning Example (#10743)
* enabling xetla only supports qtype=SYM_INT4 or FP8E5

* LISA Finetuning Example on gpu

* update readme

* add licence

* Explain parameters of lisa & Move backend codes to src dir

* fix style

* fix style

* update readme

* support chatglm

* fix style

* fix style

* update readme

* fix
2024-04-18 13:48:10 +08:00

81 lines
3.2 KiB
Python

#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from transformers import TrainerCallback
import numpy as np
from ipex_llm.utils.common import invalidInputError
# source: https://github.com/OptimalScale/LMFlow/blob/main/src/lmflow/pipeline/finetuner.py
class DynamicLayerActivationCallback(TrainerCallback):
def __init__(self, n_layers, interval_steps, model):
super().__init__()
self.n_layers = n_layers
self.interval_steps = interval_steps
self.model = model
# Determine the way to access layers based on the model type
class_to_layers_map = {
'LlamaForCausalLM': 'model.model.layers',
'Qwen2ForCausalLM': 'model.model.layers',
'MistralForCausalLM': 'model.model.layers',
'MixtralForCausalLM': 'model.model.layers',
'GemmaForCausalLM': 'model.model.layers',
'GPT2LMHeadModel': 'model.transformer.h',
'ChatGLMModel': 'model.transformer.encoder.layers',
}
model_class_name = self.model.__class__.__name__
if model_class_name in class_to_layers_map:
self.layers_attribute = class_to_layers_map[model_class_name]
else:
# self.layers_attribute = training_args.lisa_layers_attribute
invalidInputError(False, f"Model {model_class_name} not supported.")
# Dynamically execute to get the number of layers
self.total_layers = len(eval('self.' + self.layers_attribute))
self.active_layers_indices = []
def freeze_all_layers(self):
layers = eval('self.' + self.layers_attribute) # Dynamically execute to get layers
for layer in layers:
for param in layer.parameters():
param.requires_grad = False
def on_step_begin(self, args, state, control, **kwargs):
# Check if it's time to switch active layers, including at step 0
if state.global_step % self.interval_steps == 0:
self.switch_active_layers()
def switch_active_layers(self):
# First, disable gradients for all layers
self.freeze_all_layers()
# Randomly select n_layers to activate
layers = eval('self.' + self.layers_attribute) # Re-fetch layer references
self.active_layers_indices = np.random.choice(
range(self.total_layers),
self.n_layers,
replace=False
)
print(
f"Activating layers at indices: {self.active_layers_indices} for the next steps.",
flush=True
)
# Enable gradients only for the selected layers
for idx in self.active_layers_indices:
for param in layers[idx].parameters():
param.requires_grad = True