ipex-llm/python/llm/example/GPU
hxsz1997 245c7348bc
Add codegemma example (#10884)
* add codegemma example in GPU/HF-Transformers-AutoModels/

* add README of codegemma example in GPU/HF-Transformers-AutoModels/

* add codegemma example in GPU/PyTorch-Models/

* add readme of codegemma example in GPU/PyTorch-Models/

* add codegemma example in CPU/HF-Transformers-AutoModels/

* add readme of codegemma example in CPU/HF-Transformers-AutoModels/

* add codegemma example in CPU/PyTorch-Models/

* add readme of codegemma example in CPU/PyTorch-Models/

* fix typos

* fix filename typo

* add codegemma in tables

* add comments of lm_head

* remove comments of use_cache
2024-05-07 13:35:42 +08:00
..
Applications Upgrade to python 3.11 (#10711) 2024-04-09 17:41:17 +08:00
Deepspeed-AutoTP Update FLEX in Deepspeed README (#10774) 2024-04-17 09:28:24 +08:00
Deepspeed-AutoTP-FastAPI LLM: Refine Deepspped-AutoTP-FastAPI example (#10916) 2024-05-07 09:37:31 +08:00
HF-Transformers-AutoModels Add codegemma example (#10884) 2024-05-07 13:35:42 +08:00
LangChain Add tokenizer_id in Langchain (#10588) 2024-04-03 14:25:35 +08:00
LlamaIndex Llamaindex: add tokenizer_id and support chat (#10590) 2024-04-07 13:51:34 +08:00
LLM-Finetuning Downgrade datasets in axolotl example (#10849) 2024-04-23 09:41:58 +08:00
Long-Context LLM: add README.md for Long-Context examples. (#10765) 2024-04-17 15:34:59 +08:00
Lookahead/llama2 Add lookahead GPU example (#10785) 2024-04-17 17:41:55 +08:00
ModelScope-Models Upgrade to python 3.11 (#10711) 2024-04-09 17:41:17 +08:00
Pipeline-Parallel-Inference LLM: make pipeline parallel inference example more common (#10786) 2024-04-24 09:28:52 +08:00
PyTorch-Models Add codegemma example (#10884) 2024-05-07 13:35:42 +08:00
Speculative-Decoding Add lookahead GPU example (#10785) 2024-04-17 17:41:55 +08:00
vLLM-Serving Add vLLM to ipex-llm serving image (#10807) 2024-04-29 17:25:42 +08:00
README.md LLM: add README.md for Long-Context examples. (#10765) 2024-04-17 15:34:59 +08:00

IPEX-LLM Examples on Intel GPU

This folder contains examples of running IPEX-LLM on Intel GPU:

  • Applications: running LLM applications (such as autogen) on IPEX-LLM
  • HF-Transformers-AutoModels: running any Hugging Face Transformers model on IPEX-LLM (using the standard AutoModel APIs)
  • LLM-Finetuning: running finetuning (such as LoRA, QLoRA, QA-LoRA, etc) using IPEX-LLM on Intel GPUs
  • vLLM-Serving: running vLLM serving framework on intel GPUs (with IPEX-LLM low-bit optimized models)
  • Deepspeed-AutoTP: running distributed inference using DeepSpeed AutoTP (with IPEX-LLM low-bit optimized models) on Intel GPUs
  • Deepspeed-AutoTP-FastApi: running distributed inference using DeepSpeed AutoTP and start serving with FastApi(with IPEX-LLM low-bit optimized models) on Intel GPUs
  • LangChain: running LangChain applications on IPEX-LLM
  • PyTorch-Models: running any PyTorch model on IPEX-LLM (with "one-line code change")
  • Speculative-Decoding: running any Hugging Face Transformers model with self-speculative decoding on Intel GPUs
  • ModelScope-Models: running ModelScope model with IPEX-LLM on Intel GPUs
  • Long-Context: running long-context generation with IPEX-LLM on Intel Arc™ A770 Graphics.

System Support

1. Linux:

Hardware:

  • Intel Arc™ A-Series Graphics
  • Intel Data Center GPU Flex Series
  • Intel Data Center GPU Max Series

Operating System:

  • Ubuntu 20.04 or later (Ubuntu 22.04 is preferred)

2. Windows

Hardware:

  • Intel iGPU and dGPU

Operating System:

  • Windows 10/11, with or without WSL

Requirements

To apply Intel GPU acceleration, therere several steps for tools installation and environment preparation. See the GPU installation guide for mode details.