59 lines
		
	
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			59 lines
		
	
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
from bigdl.llm.transformers import AutoModelForCausalLM
 | 
						|
 | 
						|
import inspect
 | 
						|
from lm_eval.models.huggingface import AutoCausalLM
 | 
						|
from lm_eval import utils
 | 
						|
from functools import partial
 | 
						|
 | 
						|
 | 
						|
# wrap  and force the Reorderer to be in a decrease order
 | 
						|
# This is a workaround to avoid frequent memory allocation which may cause OOM
 | 
						|
def force_decrease_order(Reorderer):
 | 
						|
    def DecreaseReorderer(arr, fn):
 | 
						|
        def _collate(x):
 | 
						|
            len, tokens = fn(x)
 | 
						|
            len = - abs(len)
 | 
						|
            return len, tokens
 | 
						|
        return Reorderer(arr, _collate)
 | 
						|
    return DecreaseReorderer
 | 
						|
utils.Reorderer = force_decrease_order(utils.Reorderer)
 | 
						|
 | 
						|
 | 
						|
class BigDLLM(AutoCausalLM):
 | 
						|
    AUTO_MODEL_CLASS = AutoModelForCausalLM
 | 
						|
    AutoCausalLM_ARGS = inspect.getfullargspec(AutoCausalLM.__init__).args
 | 
						|
    def __init__(self, *args, **kwargs):
 | 
						|
        if 'device' in kwargs and 'xpu' in kwargs['device']:
 | 
						|
            import intel_extension_for_pytorch
 | 
						|
        self.bigdl_llm_kwargs = {}
 | 
						|
        keys = list(kwargs.keys())
 | 
						|
        for k in keys:
 | 
						|
            if k not in self.AutoCausalLM_ARGS:
 | 
						|
                self.bigdl_llm_kwargs[k] = kwargs.pop(k)
 | 
						|
 | 
						|
        self.bigdl_llm_kwargs['use_cache'] = kwargs.get('use_cache', True)
 | 
						|
        self.bigdl_llm_kwargs['optimize_model'] = kwargs.get('optimize_model', True)
 | 
						|
        AutoModelForCausalLM.from_pretrained = partial(AutoModelForCausalLM.from_pretrained, **self.bigdl_llm_kwargs)
 | 
						|
        
 | 
						|
        kwargs['trust_remote_code'] = kwargs.get('trust_remote_code', True)
 | 
						|
        super().__init__(*args, **kwargs)
 | 
						|
 | 
						|
    @property
 | 
						|
    def add_special_tokens(self) -> bool:
 | 
						|
        return False
 |