1706 lines
		
	
	
	
		
			87 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1706 lines
		
	
	
	
		
			87 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
# this code is copied from llama2 example test, and added performance test
 | 
						|
import torch
 | 
						|
import time
 | 
						|
import gc
 | 
						|
import traceback
 | 
						|
import threading
 | 
						|
import csv
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from datetime import date
 | 
						|
 | 
						|
import os
 | 
						|
current_dir = os.path.dirname(os.path.realpath(__file__))
 | 
						|
benchmark_util_path = os.path.join(current_dir, '..')
 | 
						|
import sys
 | 
						|
sys.path.append(benchmark_util_path)
 | 
						|
from benchmark_util import BenchmarkWrapper
 | 
						|
from ipex_llm.utils.common.log4Error import invalidInputError
 | 
						|
 | 
						|
LLAMA_IDS = ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
 | 
						|
             'meta-llama/Llama-2-70b-chat-hf','decapoda-research/llama-7b-hf',
 | 
						|
             'decapoda-research/llama-65b-hf','lmsys/vicuna-7b-v1.5',
 | 
						|
             'lmsys/vicuna-13b-v1.3','lmsys/vicuna-33b-v1.3','project-baize/merged-baize-30b']
 | 
						|
 | 
						|
CHATGLM_IDS = ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b', 'THUDM/chatglm3-6b']
 | 
						|
 | 
						|
LLAVA_IDS = ['liuhaotian/llava-v1.5-7b']
 | 
						|
 | 
						|
results = []
 | 
						|
excludes = []
 | 
						|
 | 
						|
def run_model_in_thread(model, in_out, tokenizer, result, warm_up, num_beams, input_ids, out_len, actual_in_len, num_trials, load_time):
 | 
						|
    for i in range(num_trials + warm_up):
 | 
						|
        st = time.perf_counter()
 | 
						|
        output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                    num_beams=num_beams)
 | 
						|
        torch.xpu.synchronize()
 | 
						|
        end = time.perf_counter()
 | 
						|
        output_ids = output_ids.cpu()
 | 
						|
        print("model generate cost: " + str(end - st))
 | 
						|
        output = tokenizer.batch_decode(output_ids)
 | 
						|
        print(output[0])
 | 
						|
        torch.xpu.empty_cache()
 | 
						|
        actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
        if i >= warm_up:
 | 
						|
            result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
						|
                                   actual_in_len, actual_out_len, load_time, model.peak_memory])
 | 
						|
 | 
						|
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False):
 | 
						|
    # TODO: make a parameter
 | 
						|
    result= {}
 | 
						|
    if test_api == 'transformer_int4':
 | 
						|
        result = run_transformer_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
 | 
						|
    elif test_api == 'native_int4':
 | 
						|
        run_native_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
 | 
						|
    elif test_api == 'optimize_model':
 | 
						|
        result = run_optimize_model(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
 | 
						|
    elif test_api == 'transformer_int4_gpu':
 | 
						|
        result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding)
 | 
						|
    elif test_api == 'transformer_int4_fp16_gpu':
 | 
						|
        result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=True)
 | 
						|
    elif test_api == 'optimize_model_gpu':
 | 
						|
        result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
 | 
						|
    elif test_api == 'pytorch_autocast_bf16':
 | 
						|
        result = run_pytorch_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
 | 
						|
    elif test_api == 'ipex_fp16_gpu':
 | 
						|
        result = run_ipex_fp16_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
 | 
						|
    elif test_api == "bigdl_fp16_gpu":
 | 
						|
        result = result = run_bigdl_fp16_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
 | 
						|
    elif test_api == 'deepspeed_transformer_int4_cpu':
 | 
						|
        result = run_deepspeed_transformer_int4_cpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
 | 
						|
    elif test_api == 'transformer_int4_gpu_win':
 | 
						|
        result = run_transformer_int4_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
 | 
						|
    elif test_api == 'transformer_int4_fp16_gpu_win':
 | 
						|
        result = run_transformer_int4_fp16_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
 | 
						|
    elif test_api == 'transformer_int4_loadlowbit_gpu_win':
 | 
						|
        # drop the results of the first time for better performance
 | 
						|
        run_transformer_int4_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
 | 
						|
        result = run_transformer_int4_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
 | 
						|
    elif test_api == 'transformer_autocast_bf16':
 | 
						|
        result = run_transformer_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
 | 
						|
    elif test_api == 'bigdl_ipex_bf16':
 | 
						|
        result = run_bigdl_ipex_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
 | 
						|
    elif test_api == 'bigdl_ipex_int4':
 | 
						|
        result = run_bigdl_ipex_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
 | 
						|
    elif test_api == 'bigdl_ipex_int8':
 | 
						|
        result = run_bigdl_ipex_int8(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
 | 
						|
    elif test_api == 'deepspeed_optimize_model_gpu':
 | 
						|
        result = run_deepspeed_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding)
 | 
						|
    elif test_api == 'speculative_cpu':
 | 
						|
        result = run_speculative_cpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
 | 
						|
    elif test_api == 'speculative_gpu':
 | 
						|
        result = run_speculative_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
 | 
						|
 | 
						|
    for in_out_pair in in_out_pairs:
 | 
						|
        if result and result[in_out_pair]:
 | 
						|
            results.append([repo_id,
 | 
						|
                            round(np.mean(result[in_out_pair], axis=0)[0]*1000.0, 2),
 | 
						|
                            round(np.mean(result[in_out_pair], axis=0)[1]*1000.0, 2),
 | 
						|
                            round(np.mean(result[in_out_pair], axis=0)[2]*1000.0, 2),
 | 
						|
                            in_out_pair,
 | 
						|
                            batch_size,
 | 
						|
                            f'{int(np.mean(result[in_out_pair], axis=0)[3])}' +
 | 
						|
                            f'-{int(np.mean(result[in_out_pair], axis=0)[4])}',
 | 
						|
                            num_beams,
 | 
						|
                            low_bit,
 | 
						|
                            cpu_embedding,
 | 
						|
                            round(result[in_out_pair][-1][5], 2),
 | 
						|
                            result[in_out_pair][-1][6] if any(keyword in test_api for keyword in ['int4_gpu', 'int4_fp16_gpu_win', 'int4_loadlowbit_gpu', 'fp16_gpu', 'deepspeed_optimize_model_gpu']) else 'N/A',
 | 
						|
                            streaming if 'win' in test_api else 'N/A'],
 | 
						|
                            ) 
 | 
						|
 | 
						|
 | 
						|
def get_model_path(repo_id, local_model_hub):
 | 
						|
    if local_model_hub:
 | 
						|
        repo_model_name = repo_id.split("/")[1]
 | 
						|
        local_model_path = local_model_hub + os.path.sep + repo_model_name
 | 
						|
        invalidInputError(os.path.isdir(local_model_path),
 | 
						|
                          local_model_path + " not exists!, Please check your models' folder.")
 | 
						|
        return local_model_path
 | 
						|
    else:
 | 
						|
        return repo_id
 | 
						|
 | 
						|
 | 
						|
def run_native_int4(repo_id,
 | 
						|
                    local_model_hub,
 | 
						|
                    in_out_pairs,
 | 
						|
                    warm_up,
 | 
						|
                    num_trials):
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
    from ipex_llm.transformers import BigdlNativeForCausalLM
 | 
						|
    from ipex_llm import llm_convert
 | 
						|
    if "chatglm" in repo_id.lower():
 | 
						|
        family = "chatglm"
 | 
						|
    elif "llama" in repo_id.lower():
 | 
						|
        family = "llama"
 | 
						|
    else:
 | 
						|
        invalidInputError(False, "Model family unknown: " + repo_id)
 | 
						|
 | 
						|
    bigdl_llm_path = llm_convert(model=model_path,
 | 
						|
                                 outfile="./", outtype='int4', model_family=family)
 | 
						|
    for in_out in in_out_pairs:
 | 
						|
        in_out_len = in_out.split("-")
 | 
						|
        in_len = int(in_out_len[0])
 | 
						|
        out_len = int(in_out_len[1])
 | 
						|
        input_str = open(f"prompt/{in_len}.txt", 'r').read()
 | 
						|
        # As different tokenizer has different encodings,
 | 
						|
        # slice the input_ids to ensure the prompt length is required length.
 | 
						|
        n_ctx = in_len + out_len if in_len + out_len > 512 else 512
 | 
						|
        for i in range(num_trials + warm_up):
 | 
						|
            model = BigdlNativeForCausalLM.from_pretrained(bigdl_llm_path, model_family=family, n_ctx=n_ctx)
 | 
						|
            input_ids = model.tokenize(input_str)
 | 
						|
            input_ids = input_ids[:in_len]
 | 
						|
            true_input = model.batch_decode(input_ids)
 | 
						|
            st = time.perf_counter()
 | 
						|
            output = model(true_input, max_tokens=out_len)
 | 
						|
            end = time.perf_counter()
 | 
						|
            print("model generate cost: " + str(end - st))
 | 
						|
            print(output)
 | 
						|
 | 
						|
    os.remove(bigdl_llm_path)
 | 
						|
 | 
						|
 | 
						|
def run_transformer_int4(repo_id,
 | 
						|
                         local_model_hub,
 | 
						|
                         in_out_pairs,
 | 
						|
                         warm_up,
 | 
						|
                         num_trials,
 | 
						|
                         num_beams,
 | 
						|
                         low_bit,
 | 
						|
                         batch_size):
 | 
						|
    from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
 | 
						|
    from transformers import AutoTokenizer, LlamaTokenizer
 | 
						|
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype='auto').eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
 | 
						|
                                                     use_cache=True).eval()
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
 | 
						|
                                                     use_cache=True).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    end = time.perf_counter()
 | 
						|
    load_time = end - st
 | 
						|
    print(">> loading of model costs {}s".format(load_time))
 | 
						|
 | 
						|
    model = BenchmarkWrapper(model)
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode():
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            in_out_len = in_out.split("-")
 | 
						|
            in_len = int(in_out_len[0])
 | 
						|
            out_len = int(in_out_len[1])
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # in_len.txt maybe shorter than we need,
 | 
						|
            # use much longer context to make sure input length
 | 
						|
            test_length = min(in_len*2, 8192)
 | 
						|
            while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
						|
                test_length = test_length * 2
 | 
						|
            input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # slice the input_ids to ensure the prompt length is required length.
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            input_ids = input_ids[:, :in_len]
 | 
						|
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
            input_list = [true_str] * batch_size
 | 
						|
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids
 | 
						|
            actual_in_len = input_ids.shape[1]
 | 
						|
            result[in_out] = []
 | 
						|
            for i in range(num_trials + warm_up):
 | 
						|
                st = time.perf_counter()
 | 
						|
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                            num_beams=num_beams)
 | 
						|
                end = time.perf_counter()
 | 
						|
                print("model generate cost: " + str(end - st))
 | 
						|
                output = tokenizer.batch_decode(output_ids)
 | 
						|
                print(output[0])
 | 
						|
                actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                if i >= warm_up:
 | 
						|
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
						|
                                           actual_in_len, actual_out_len, load_time])
 | 
						|
    return result
 | 
						|
 | 
						|
def run_pytorch_autocast_bf16(repo_id,
 | 
						|
                         local_model_hub,
 | 
						|
                         in_out_pairs,
 | 
						|
                         warm_up,
 | 
						|
                         num_trials,
 | 
						|
                         num_beams,
 | 
						|
                         batch_size):
 | 
						|
    from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, LlamaTokenizer
 | 
						|
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        # TODO: need verify chatglm family run bf16.
 | 
						|
        print("Currently pytorch do not support bfloat16 on cpu for chatglm models. Will skip it")
 | 
						|
        return
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16,
 | 
						|
                                                     use_cache=True)
 | 
						|
        # Need to use LlamaTokenizer, reason please refer to issue: https://github.com/intel-analytics/BigDL/issues/8944
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16,
 | 
						|
                                                     use_cache=True)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    end = time.perf_counter()
 | 
						|
    load_time = end - st
 | 
						|
    print(">> loading of model costs {}s".format(load_time))
 | 
						|
 | 
						|
    model = BenchmarkWrapper(model)
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode(), torch.autocast("cpu"):
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            in_out_len = in_out.split("-")
 | 
						|
            in_len = int(in_out_len[0])
 | 
						|
            out_len = int(in_out_len[1])
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # in_len.txt maybe shorter than we need,
 | 
						|
            # use much longer context to make sure input length
 | 
						|
            test_length = min(in_len*2, 8192)
 | 
						|
            while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
						|
                test_length = test_length * 2
 | 
						|
            input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # slice the input_ids to ensure the prompt length is required length.
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            input_ids = input_ids[:, :in_len]
 | 
						|
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
            input_list = [true_str] * batch_size
 | 
						|
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids
 | 
						|
            actual_in_len = input_ids.shape[1]
 | 
						|
            result[in_out] = []
 | 
						|
            print("input tokens: {}".format(input_ids.shape[1]))
 | 
						|
            for i in range(num_trials + warm_up):
 | 
						|
                st = time.perf_counter()
 | 
						|
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                            num_beams=num_beams)
 | 
						|
                end = time.perf_counter()
 | 
						|
                print("model generate cost: " + str(end - st))
 | 
						|
                output = tokenizer.batch_decode(output_ids)
 | 
						|
                print(output[0])
 | 
						|
                actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                if i >= warm_up:
 | 
						|
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
						|
                                           actual_in_len, actual_out_len, load_time])
 | 
						|
    return result
 | 
						|
 | 
						|
def run_optimize_model(repo_id,
 | 
						|
                       local_model_hub,
 | 
						|
                       in_out_pairs,
 | 
						|
                       warm_up,
 | 
						|
                       num_trials,
 | 
						|
                       num_beams,
 | 
						|
                       low_bit,
 | 
						|
                       batch_size):
 | 
						|
    from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer
 | 
						|
    from ipex_llm import optimize_model
 | 
						|
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, trust_remote_code=True).eval()
 | 
						|
        model = optimize_model(model, low_bit=low_bit)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
 | 
						|
                                                     use_cache=True, low_cpu_mem_usage=True).eval()
 | 
						|
        model = optimize_model(model, low_bit=low_bit)
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True).eval()
 | 
						|
        model = optimize_model(model, low_bit=low_bit)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path)
 | 
						|
    end = time.perf_counter()
 | 
						|
    load_time = end - st
 | 
						|
    print(">> loading of model costs {}s".format(load_time))
 | 
						|
 | 
						|
    model = BenchmarkWrapper(model)
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode():
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            in_out_len = in_out.split("-")
 | 
						|
            in_len = int(in_out_len[0])
 | 
						|
            out_len = int(in_out_len[1])
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # in_len.txt maybe shorter than we need,
 | 
						|
            # use much longer context to make sure input length
 | 
						|
            test_length = min(in_len*2, 8192)
 | 
						|
            while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
						|
                test_length = test_length * 2
 | 
						|
            input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # slice the input_ids to ensure the prompt length is required length.
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            input_ids = input_ids[:, :in_len]
 | 
						|
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
            input_list = [true_str] * batch_size
 | 
						|
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids
 | 
						|
            actual_in_len = input_ids.shape[1]
 | 
						|
            result[in_out] = []
 | 
						|
            for i in range(num_trials + warm_up):
 | 
						|
                st = time.perf_counter()
 | 
						|
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                            num_beams=num_beams)
 | 
						|
                end = time.perf_counter()
 | 
						|
                print("model generate cost: " + str(end - st))
 | 
						|
                output = tokenizer.batch_decode(output_ids)
 | 
						|
                print(output[0])
 | 
						|
                actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                if i >= warm_up:
 | 
						|
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
						|
                                           actual_in_len, actual_out_len, load_time])
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def run_transformer_int4_gpu(repo_id,
 | 
						|
                             local_model_hub,
 | 
						|
                             in_out_pairs,
 | 
						|
                             warm_up,
 | 
						|
                             num_trials,
 | 
						|
                             num_beams,
 | 
						|
                             low_bit,
 | 
						|
                             batch_size,
 | 
						|
                             cpu_embedding,
 | 
						|
                             fp16=False):
 | 
						|
    from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
 | 
						|
    from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
 | 
						|
    import intel_extension_for_pytorch as ipex
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    st = time.perf_counter()
 | 
						|
    origin_repo_id = repo_id.replace("-4bit", "")
 | 
						|
    if origin_repo_id in CHATGLM_IDS:
 | 
						|
        if "4bit" in repo_id:
 | 
						|
            model = AutoModel.load_low_bit(model_path, optimize_model=True,
 | 
						|
                                            trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()  
 | 
						|
        else:
 | 
						|
            model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
						|
                                            trust_remote_code=True, use_cache=True).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, cpu_embedding=cpu_embedding)
 | 
						|
    elif origin_repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
 | 
						|
                                                     use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    else:
 | 
						|
        if "4bit" in repo_id:
 | 
						|
            model = AutoModelForCausalLM.load_low_bit(model_path, optimize_model=True,
 | 
						|
                                            trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
						|
        else:
 | 
						|
            if 'starcoder' in repo_id:
 | 
						|
                # Load starcoder-15.5b model in bf16 format to avoid CPU OOM.
 | 
						|
                model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
 | 
						|
                                                            trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding, torch_dtype=torch.bfloat16).eval()
 | 
						|
                # Convert the low-bit model back to fp32 for performance considerations.
 | 
						|
                model = model.float()
 | 
						|
            else:
 | 
						|
                model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
 | 
						|
                                                            trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
 | 
						|
    if fp16:
 | 
						|
        model = model.half()
 | 
						|
        print("Convert model to half precision")
 | 
						|
    
 | 
						|
    model = model.to('xpu')
 | 
						|
 | 
						|
    end = time.perf_counter()
 | 
						|
    load_time = end - st
 | 
						|
    print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))
 | 
						|
 | 
						|
    model = BenchmarkWrapper(model)
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode():
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            in_out_len = in_out.split("-")
 | 
						|
            in_len = int(in_out_len[0])
 | 
						|
            out_len = int(in_out_len[1])
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # in_len.txt maybe shorter than we need,
 | 
						|
            # use much longer context to make sure input length
 | 
						|
            test_length = min(in_len*2, 8192)
 | 
						|
            while test_length not in [32, 256, 1024, 2048, 8192] and test_length < 8192:
 | 
						|
                test_length = test_length * 2
 | 
						|
            # For the sequence length not in [32, 256, 1024, 2048, 8192], it will be truncated from 8192.txt.
 | 
						|
            test_length = min(test_length, 8192)
 | 
						|
            input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # slice the input_ids to ensure the prompt length is required length.
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            input_ids = input_ids[:, :in_len]
 | 
						|
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
            input_list = [true_str] * batch_size
 | 
						|
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
 | 
						|
            actual_in_len = input_ids.shape[1]
 | 
						|
            result[in_out] = []
 | 
						|
            thread = threading.Thread(target=run_model_in_thread, args=(model, in_out, tokenizer, result, warm_up, num_beams, input_ids, out_len, actual_in_len, num_trials, load_time))
 | 
						|
            thread.start()
 | 
						|
            thread.join()
 | 
						|
 | 
						|
            if result[in_out]:
 | 
						|
                first_token_latency = round(np.mean(result[in_out], axis=0)[0]*1000.0, 2)
 | 
						|
                rest_token_latency = round(np.mean(result[in_out], axis=0)[1]*1000.0, 2)
 | 
						|
                encoder_time = round(np.mean(result[in_out], axis=0)[2]*1000.0, 2)
 | 
						|
                input_output_tokens = in_out
 | 
						|
                actual_input_output_tokens = f'{int(np.mean(result[in_out], axis=0)[3])}' + f'-{int(np.mean(result[in_out], axis=0)[4])}'
 | 
						|
                load_time = round(result[in_out][-1][5], 2)
 | 
						|
                peak_mem = result[in_out][-1][6]
 | 
						|
                with open(csv_name, mode='a', newline='') as file:
 | 
						|
                    csv_writer = csv.writer(file)
 | 
						|
                    file.seek(0, os.SEEK_END)
 | 
						|
                    if file.tell() == 0:
 | 
						|
                        csv_writer.writerow(["","model","1st token avg latency (ms)","2+ avg latency (ms/token)","encoder time (ms)","input/output tokens", "batch_size", "actual input/output tokens","num_beams","low_bit","cpu_embedding","model loading time (s)","peak mem (GB)"])
 | 
						|
                    csv_writer.writerow(['', repo_id, first_token_latency, rest_token_latency, encoder_time, input_output_tokens, batch_size, actual_input_output_tokens, num_beams, low_bit, '', load_time, peak_mem])
 | 
						|
 | 
						|
    model.to('cpu')
 | 
						|
    torch.xpu.synchronize()
 | 
						|
    torch.xpu.empty_cache()
 | 
						|
    del model
 | 
						|
    gc.collect()
 | 
						|
    return result
 | 
						|
 | 
						|
def run_optimize_model_gpu(repo_id,
 | 
						|
                           local_model_hub,
 | 
						|
                           in_out_pairs,
 | 
						|
                           warm_up,
 | 
						|
                           num_trials,
 | 
						|
                           num_beams,
 | 
						|
                           low_bit,
 | 
						|
                           batch_size):
 | 
						|
    from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
 | 
						|
    from ipex_llm import optimize_model
 | 
						|
    import intel_extension_for_pytorch as ipex
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True,
 | 
						|
                                          trust_remote_code=True, use_cache=True).eval()
 | 
						|
        model = optimize_model(model, low_bit=low_bit)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
 | 
						|
                                                     use_cache=True, low_cpu_mem_usage=True).eval()
 | 
						|
        model = optimize_model(model, low_bit=low_bit)
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True,
 | 
						|
                                                     trust_remote_code=True, use_cache=True).eval()
 | 
						|
        model = optimize_model(model, low_bit=low_bit)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    end = time.perf_counter()
 | 
						|
    load_time = end - st
 | 
						|
    print(">> loading of model costs {}s".format(load_time))
 | 
						|
 | 
						|
    model = BenchmarkWrapper(model)
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode():
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            in_out_len = in_out.split("-")
 | 
						|
            in_len = int(in_out_len[0])
 | 
						|
            out_len = int(in_out_len[1])
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # in_len.txt maybe shorter than we need,
 | 
						|
            # use much longer context to make sure input length
 | 
						|
            test_length = min(in_len*2, 8192)
 | 
						|
            while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
						|
                test_length = test_length * 2
 | 
						|
            input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # slice the input_ids to ensure the prompt length is required length.
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            input_ids = input_ids[:, :in_len]
 | 
						|
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
            input_list = [true_str] * batch_size
 | 
						|
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
 | 
						|
            actual_in_len = input_ids.shape[1]
 | 
						|
            result[in_out] = []
 | 
						|
            for i in range(num_trials + warm_up):
 | 
						|
                st = time.perf_counter()
 | 
						|
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                            num_beams=num_beams)
 | 
						|
                torch.xpu.synchronize()
 | 
						|
                end = time.perf_counter()
 | 
						|
                output_ids = output_ids.cpu()
 | 
						|
                print("model generate cost: " + str(end - st))
 | 
						|
                output = tokenizer.batch_decode(output_ids)
 | 
						|
                actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                print(output[0])
 | 
						|
                if i >= warm_up:
 | 
						|
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
						|
                                           actual_in_len, actual_out_len, load_time])
 | 
						|
    del model
 | 
						|
    torch.xpu.empty_cache()
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def run_ipex_fp16_gpu(repo_id,
 | 
						|
                      local_model_hub,
 | 
						|
                      in_out_pairs,
 | 
						|
                      warm_up,
 | 
						|
                      num_trials,
 | 
						|
                      num_beams,
 | 
						|
                      batch_size):
 | 
						|
    from transformers import AutoModel, AutoModelForCausalLM
 | 
						|
    from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
 | 
						|
    import intel_extension_for_pytorch as ipex
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.from_pretrained(model_path, trust_remote_code=True, use_cache=True)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.half().to('xpu')
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
 | 
						|
                                                     use_cache=True)
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.half().to('xpu')
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, use_cache=True)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.half().to('xpu')
 | 
						|
    end = time.perf_counter()
 | 
						|
    load_time = end - st
 | 
						|
    print(">> loading of model costs {}s".format(load_time))
 | 
						|
 | 
						|
    model = BenchmarkWrapper(model)
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode():
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            in_out_len = in_out.split("-")
 | 
						|
            in_len = int(in_out_len[0])
 | 
						|
            out_len = int(in_out_len[1])
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # in_len.txt maybe shorter than we need,
 | 
						|
            # use much longer context to make sure input length
 | 
						|
            test_length = min(in_len*2, 8192)
 | 
						|
            while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
						|
                test_length = test_length * 2
 | 
						|
            input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # slice the input_ids to ensure the prompt length is required length.
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            input_ids = input_ids[:, :in_len]
 | 
						|
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
            input_list = [true_str] * batch_size
 | 
						|
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
 | 
						|
            actual_in_len = input_ids.shape[1]
 | 
						|
            result[in_out] = []
 | 
						|
            for i in range(num_trials + warm_up):
 | 
						|
                st = time.perf_counter()
 | 
						|
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                            num_beams=num_beams)
 | 
						|
                torch.xpu.synchronize()
 | 
						|
                end = time.perf_counter()
 | 
						|
                output_ids = output_ids.cpu()
 | 
						|
                print("model generate cost: " + str(end - st))
 | 
						|
                output = tokenizer.batch_decode(output_ids)
 | 
						|
                actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                print(output[0])
 | 
						|
                if i >= warm_up:
 | 
						|
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
						|
                                           actual_in_len, actual_out_len, load_time])
 | 
						|
    del model
 | 
						|
    torch.xpu.empty_cache()
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def run_bigdl_fp16_gpu(repo_id,
 | 
						|
                       local_model_hub,
 | 
						|
                       in_out_pairs,
 | 
						|
                       warm_up,
 | 
						|
                       num_trials,
 | 
						|
                       num_beams,
 | 
						|
                       batch_size):
 | 
						|
    from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
 | 
						|
    from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
 | 
						|
    import intel_extension_for_pytorch as ipex
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.from_pretrained(model_path, trust_remote_code=True, use_cache=True,
 | 
						|
                                          load_in_low_bit="fp16", torch_dtype=torch.float16)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
 | 
						|
                                                     use_cache=True,
 | 
						|
                                                     load_in_low_bit="fp16",
 | 
						|
                                                     torch_dtype=torch.float16)
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
 | 
						|
                                                     use_cache=True,
 | 
						|
                                                     load_in_low_bit="fp16",
 | 
						|
                                                     torch_dtype=torch.float16)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    end = time.perf_counter()
 | 
						|
    load_time = end - st
 | 
						|
    print(">> loading of model costs {}s".format(load_time))
 | 
						|
 | 
						|
    model = BenchmarkWrapper(model)
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode():
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            in_out_len = in_out.split("-")
 | 
						|
            in_len = int(in_out_len[0])
 | 
						|
            out_len = int(in_out_len[1])
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # in_len.txt maybe shorter than we need,
 | 
						|
            # use much longer context to make sure input length
 | 
						|
            test_length = min(in_len*2, 8192)
 | 
						|
            while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
						|
                test_length = test_length * 2
 | 
						|
            input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # slice the input_ids to ensure the prompt length is required length.
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            input_ids = input_ids[:, :in_len]
 | 
						|
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
            input_list = [true_str] * batch_size
 | 
						|
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
 | 
						|
            actual_in_len = input_ids.shape[1]
 | 
						|
            result[in_out] = []
 | 
						|
            for i in range(num_trials + warm_up):
 | 
						|
                st = time.perf_counter()
 | 
						|
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                            num_beams=num_beams)
 | 
						|
                torch.xpu.synchronize()
 | 
						|
                end = time.perf_counter()
 | 
						|
                output_ids = output_ids.cpu()
 | 
						|
                print("model generate cost: " + str(end - st))
 | 
						|
                output = tokenizer.batch_decode(output_ids)
 | 
						|
                actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                print(output[0])
 | 
						|
                if i >= warm_up:
 | 
						|
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
						|
                                           actual_in_len, actual_out_len, load_time, model.peak_memory])
 | 
						|
    del model
 | 
						|
    torch.xpu.empty_cache()
 | 
						|
    return result
 | 
						|
 | 
						|
def run_deepspeed_transformer_int4_cpu(repo_id,
 | 
						|
                         local_model_hub,
 | 
						|
                         in_out_pairs,
 | 
						|
                         warm_up,
 | 
						|
                         num_trials,
 | 
						|
                         num_beams,
 | 
						|
                         low_bit,
 | 
						|
                         batch_size):
 | 
						|
    from transformers import AutoModelForCausalLM, LlamaTokenizer, AutoTokenizer
 | 
						|
    import deepspeed
 | 
						|
    from ipex_llm import optimize_model
 | 
						|
    import argparse
 | 
						|
    # parser is for deepspeed subprocesses' inline parameter
 | 
						|
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
 | 
						|
    parser.add_argument('--local_rank', type=str, default=0, help='this is automatically set when using deepspeed launcher')
 | 
						|
    args = parser.parse_args()
 | 
						|
    local_rank = int(os.getenv("RANK", "1"))
 | 
						|
    if local_rank == -1:
 | 
						|
        local_rank = args.local_rank
 | 
						|
    world_size = int(os.getenv("WORLD_SIZE", "1"))
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
 | 
						|
    st = time.perf_counter()
 | 
						|
    # Note: only tested cpu Llama2-7b
 | 
						|
    # Native Huggingface transformers loading to enable deepspeed init
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.from_pretrained(model_path, trust_remote_code=True, use_cache=True)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
 | 
						|
                                                     use_cache=True)
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, use_cache=True)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
 | 
						|
    # Parallelize model on deepspeed
 | 
						|
    model = deepspeed.init_inference(model, mp_size=world_size,
 | 
						|
                                     dtype=torch.float16,
 | 
						|
                                     replace_method="auto")
 | 
						|
 | 
						|
    # Apply BigDL-LLM INT4 optimization to enable BenchmarkWrapper
 | 
						|
    # Note: only tested sym_int4
 | 
						|
    model = optimize_model(model.module.to(f'cpu'), low_bit=low_bit)
 | 
						|
    model = model.to(f'cpu:{local_rank}')
 | 
						|
 | 
						|
    end = time.perf_counter()
 | 
						|
    load_time = end - st
 | 
						|
    print(">> loading of model costs {}s".format(load_time))
 | 
						|
 | 
						|
    model = BenchmarkWrapper(model)
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode():
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            in_out_len = in_out.split("-")
 | 
						|
            in_len = int(in_out_len[0])
 | 
						|
            out_len = int(in_out_len[1])
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # in_len.txt maybe shorter than we need,
 | 
						|
            # use much longer context to make sure input length
 | 
						|
            test_length = min(in_len*2, 8192)
 | 
						|
            while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
						|
                test_length = test_length * 2
 | 
						|
            input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # slice the input_ids to ensure the prompt length is required length.
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            input_ids = input_ids[:, :in_len]
 | 
						|
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
            input_list = [true_str] * batch_size
 | 
						|
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids
 | 
						|
            actual_in_len = input_ids.shape[1]
 | 
						|
            result[in_out] = []
 | 
						|
            for i in range(num_trials + warm_up):
 | 
						|
                st = time.perf_counter()
 | 
						|
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                                num_beams=num_beams)
 | 
						|
                end = time.perf_counter()
 | 
						|
                if local_rank == 0:
 | 
						|
                    print("model generate cost: " + str(end - st))
 | 
						|
                output = tokenizer.batch_decode(output_ids)
 | 
						|
                if local_rank == 0:
 | 
						|
                    print(output[0])
 | 
						|
                actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                if i >= warm_up :
 | 
						|
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
						|
                                           actual_in_len, actual_out_len, load_time])
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def run_transformer_int4_gpu_win(repo_id,
 | 
						|
                                 local_model_hub,
 | 
						|
                                 in_out_pairs,
 | 
						|
                                 warm_up,
 | 
						|
                                 num_trials,
 | 
						|
                                 num_beams,
 | 
						|
                                 low_bit,
 | 
						|
                                 cpu_embedding,
 | 
						|
                                 batch_size,
 | 
						|
                                 streaming):
 | 
						|
    from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
 | 
						|
    from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer, TextStreamer
 | 
						|
    import intel_extension_for_pytorch as ipex
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
						|
                                          trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
						|
                                                     trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    elif repo_id in LLAVA_IDS:
 | 
						|
        llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
 | 
						|
        sys.path.append(rf"{llava_repo_dir}")
 | 
						|
        from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
						|
                                          trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
 | 
						|
                                                     trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    end = time.perf_counter()
 | 
						|
    load_time = end - st
 | 
						|
    print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))
 | 
						|
 | 
						|
    model = BenchmarkWrapper(model)
 | 
						|
    streamer = TextStreamer(tokenizer, skip_prompt=True)
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode():
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            try:
 | 
						|
                in_out_len = in_out.split("-")
 | 
						|
                in_len = int(in_out_len[0])
 | 
						|
                out_len = int(in_out_len[1])
 | 
						|
                # As different tokenizer has different encodings,
 | 
						|
                # in_len.txt maybe shorter than we need,
 | 
						|
                # use much longer context to make sure input length
 | 
						|
                test_length = min(in_len*2, 8192)
 | 
						|
                while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
						|
                    test_length = test_length * 2
 | 
						|
                input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
						|
                # As different tokenizer has different encodings,
 | 
						|
                # slice the input_ids to ensure the prompt length is required length.
 | 
						|
                input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
                input_ids = input_ids[:, :in_len]
 | 
						|
                true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
                input_list = [true_str] * batch_size
 | 
						|
                input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
 | 
						|
                actual_in_len = input_ids.shape[1]
 | 
						|
                result[in_out] = []
 | 
						|
                for i in range(num_trials + warm_up):
 | 
						|
                    st = time.perf_counter()
 | 
						|
                    if streaming:
 | 
						|
                        output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                                    num_beams=num_beams, streamer=streamer)
 | 
						|
                    else:
 | 
						|
                        output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                                    num_beams=num_beams)
 | 
						|
                    torch.xpu.synchronize()
 | 
						|
                    end = time.perf_counter()
 | 
						|
                    output_ids = output_ids.cpu()
 | 
						|
                    print("model generate cost: " + str(end - st))
 | 
						|
                    output = tokenizer.batch_decode(output_ids)
 | 
						|
                    if not streaming:
 | 
						|
                        print(output[0])
 | 
						|
                    actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                    if i >= warm_up:
 | 
						|
                        result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
						|
                                               actual_in_len, actual_out_len, load_time, model.peak_memory])
 | 
						|
                    # torch.xpu.empty_cache() # this may make first token slower
 | 
						|
            except RuntimeError:
 | 
						|
                traceback.print_exc()
 | 
						|
                pass
 | 
						|
            torch.xpu.synchronize()
 | 
						|
            torch.xpu.empty_cache()
 | 
						|
    model.to('cpu')
 | 
						|
    torch.xpu.synchronize()
 | 
						|
    torch.xpu.empty_cache()
 | 
						|
    del model
 | 
						|
    gc.collect()
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def run_transformer_int4_fp16_gpu_win(repo_id,
 | 
						|
                                      local_model_hub,
 | 
						|
                                      in_out_pairs,
 | 
						|
                                      warm_up,
 | 
						|
                                      num_trials,
 | 
						|
                                      num_beams,
 | 
						|
                                      low_bit,
 | 
						|
                                      cpu_embedding,
 | 
						|
                                      batch_size,
 | 
						|
                                      streaming):
 | 
						|
    from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
 | 
						|
    from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer, TextStreamer
 | 
						|
    import intel_extension_for_pytorch as ipex
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
						|
                                          trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.half()
 | 
						|
        model = model.to('xpu')
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
						|
                                                     trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.half()
 | 
						|
        model = model.to('xpu')
 | 
						|
    elif repo_id in LLAVA_IDS:
 | 
						|
        llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
 | 
						|
        sys.path.append(rf"{llava_repo_dir}")
 | 
						|
        from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
						|
                                          trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.half()
 | 
						|
        model = model.to('xpu')
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
 | 
						|
                                                     trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.half()
 | 
						|
        model = model.to('xpu')
 | 
						|
    end = time.perf_counter()
 | 
						|
    load_time = end - st
 | 
						|
    print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))
 | 
						|
 | 
						|
    model = BenchmarkWrapper(model)
 | 
						|
    streamer = TextStreamer(tokenizer, skip_prompt=True)
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode():
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            try:
 | 
						|
                in_out_len = in_out.split("-")
 | 
						|
                in_len = int(in_out_len[0])
 | 
						|
                out_len = int(in_out_len[1])
 | 
						|
                # As different tokenizer has different encodings,
 | 
						|
                # in_len.txt maybe shorter than we need,
 | 
						|
                # use much longer context to make sure input length
 | 
						|
                test_length = min(in_len*2, 8192)
 | 
						|
                while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
						|
                    test_length = test_length * 2
 | 
						|
                input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
						|
                # As different tokenizer has different encodings,
 | 
						|
                # slice the input_ids to ensure the prompt length is required length.
 | 
						|
                input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
                input_ids = input_ids[:, :in_len]
 | 
						|
                true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
                input_list = [true_str] * batch_size
 | 
						|
                input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
 | 
						|
                actual_in_len = input_ids.shape[1]
 | 
						|
                result[in_out] = []
 | 
						|
                for i in range(num_trials + warm_up):
 | 
						|
                    st = time.perf_counter()
 | 
						|
                    if streaming:
 | 
						|
                        output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                                    num_beams=num_beams, streamer=streamer)
 | 
						|
                    else:
 | 
						|
                        output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                                    num_beams=num_beams)
 | 
						|
                    torch.xpu.synchronize()
 | 
						|
                    end = time.perf_counter()
 | 
						|
                    output_ids = output_ids.cpu()
 | 
						|
                    print("model generate cost: " + str(end - st))
 | 
						|
                    output = tokenizer.batch_decode(output_ids)
 | 
						|
                    if not streaming:
 | 
						|
                        print(output[0])
 | 
						|
                    actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                    if i >= warm_up:
 | 
						|
                        result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
						|
                                               actual_in_len, actual_out_len, load_time, model.peak_memory])
 | 
						|
                    # torch.xpu.empty_cache() # this may make first token slower
 | 
						|
            except RuntimeError:
 | 
						|
                traceback.print_exc()
 | 
						|
                pass
 | 
						|
            torch.xpu.synchronize()
 | 
						|
            torch.xpu.empty_cache()
 | 
						|
    model.to('cpu')
 | 
						|
    torch.xpu.synchronize()
 | 
						|
    torch.xpu.empty_cache()
 | 
						|
    del model
 | 
						|
    gc.collect()
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def run_transformer_int4_loadlowbit_gpu_win(repo_id,
 | 
						|
                                            local_model_hub,
 | 
						|
                                            in_out_pairs,
 | 
						|
                                            warm_up,
 | 
						|
                                            num_trials,
 | 
						|
                                            num_beams,
 | 
						|
                                            low_bit,
 | 
						|
                                            cpu_embedding,
 | 
						|
                                            batch_size,
 | 
						|
                                            streaming):
 | 
						|
    from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
 | 
						|
    from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer, TextStreamer
 | 
						|
    import intel_extension_for_pytorch as ipex
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
    # Load BigDL-LLM optimized low bit model
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
 | 
						|
                                       use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
 | 
						|
                                                  use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    elif repo_id in LLAVA_IDS:
 | 
						|
        llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
 | 
						|
        sys.path.append(rf"{llava_repo_dir}")
 | 
						|
        from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
 | 
						|
        model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
 | 
						|
                                                  use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
 | 
						|
                                                  use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    end = time.perf_counter()
 | 
						|
    load_time = end - st
 | 
						|
    print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))
 | 
						|
 | 
						|
    model = BenchmarkWrapper(model)
 | 
						|
    streamer = TextStreamer(tokenizer, skip_prompt=True)
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode():
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            try:
 | 
						|
                in_out_len = in_out.split("-")
 | 
						|
                in_len = int(in_out_len[0])
 | 
						|
                out_len = int(in_out_len[1])
 | 
						|
                # As different tokenizer has different encodings,
 | 
						|
                # in_len.txt maybe shorter than we need,
 | 
						|
                # use much longer context to make sure input length
 | 
						|
                test_length = min(in_len*2, 8192)
 | 
						|
                while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
						|
                    test_length = test_length * 2
 | 
						|
                input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
						|
                # As different tokenizer has different encodings,
 | 
						|
                # slice the input_ids to ensure the prompt length is required length.
 | 
						|
                input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
                input_ids = input_ids[:, :in_len]
 | 
						|
                true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
                input_list = [true_str] * batch_size
 | 
						|
                input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
 | 
						|
                actual_in_len = input_ids.shape[1]
 | 
						|
                result[in_out] = []
 | 
						|
                for i in range(num_trials + warm_up):
 | 
						|
                    st = time.perf_counter()
 | 
						|
                    if streaming:
 | 
						|
                        output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                                    num_beams=num_beams, streamer=streamer)
 | 
						|
                    else:
 | 
						|
                        output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                                    num_beams=num_beams)
 | 
						|
                    torch.xpu.synchronize()
 | 
						|
                    end = time.perf_counter()
 | 
						|
                    output_ids = output_ids.cpu()
 | 
						|
                    print("model generate cost: " + str(end - st))
 | 
						|
                    output = tokenizer.batch_decode(output_ids)
 | 
						|
                    if not streaming:
 | 
						|
                        print(output[0])
 | 
						|
                    actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                    if i >= warm_up:
 | 
						|
                        result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
						|
                                               actual_in_len, actual_out_len, load_time, model.peak_memory])
 | 
						|
                    # torch.xpu.empty_cache() # this may make first token slower
 | 
						|
            except RuntimeError:
 | 
						|
                traceback.print_exc()
 | 
						|
                pass
 | 
						|
            torch.xpu.synchronize()
 | 
						|
            torch.xpu.empty_cache()
 | 
						|
    model.to('cpu')
 | 
						|
    torch.xpu.synchronize()
 | 
						|
    torch.xpu.empty_cache()
 | 
						|
    del model
 | 
						|
    gc.collect()
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def run_transformer_autocast_bf16( repo_id,
 | 
						|
                    local_model_hub,
 | 
						|
                    in_out_pairs,
 | 
						|
                    warm_up,
 | 
						|
                    num_trials,
 | 
						|
                    num_beams,
 | 
						|
                    batch_size):
 | 
						|
    from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
 | 
						|
    from transformers import AutoTokenizer, LlamaTokenizer
 | 
						|
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
    # Load model in bf16,
 | 
						|
    # which convert the relevant layers in the model into BF16 format
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
 | 
						|
                                          use_cache=True).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
 | 
						|
                                                     use_cache=True).eval()
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
 | 
						|
                                                     use_cache=True).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    end = time.perf_counter()
 | 
						|
    load_time = end - st
 | 
						|
    print(">> loading of model costs {}s".format(load_time))
 | 
						|
 | 
						|
    model = BenchmarkWrapper(model)
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode(), torch.autocast("cpu"):
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            in_out_len = in_out.split("-")
 | 
						|
            in_len = int(in_out_len[0])
 | 
						|
            out_len = int(in_out_len[1])
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # in_len.txt maybe shorter than we need,
 | 
						|
            # use much longer context to make sure input length
 | 
						|
            test_length = min(in_len*2, 8192)
 | 
						|
            while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
						|
                test_length = test_length * 2
 | 
						|
            input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # slice the input_ids to ensure the prompt length is required length.
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            input_ids = input_ids[:, :in_len]
 | 
						|
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
            input_list = [true_str] * batch_size
 | 
						|
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids
 | 
						|
            actual_in_len = input_ids.shape[1]
 | 
						|
            result[in_out] = []
 | 
						|
            for i in range(num_trials + warm_up):
 | 
						|
                st = time.perf_counter()
 | 
						|
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                            num_beams=num_beams)
 | 
						|
                end = time.perf_counter()
 | 
						|
                print("model generate cost: " + str(end - st))
 | 
						|
                output = tokenizer.batch_decode(output_ids)
 | 
						|
                print(output[0])
 | 
						|
                actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                if i >= warm_up:
 | 
						|
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
						|
                                          actual_in_len, actual_out_len, load_time])
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def run_bigdl_ipex_bf16(repo_id,
 | 
						|
                    local_model_hub,
 | 
						|
                    in_out_pairs,
 | 
						|
                    warm_up,
 | 
						|
                    num_trials,
 | 
						|
                    num_beams,
 | 
						|
                    batch_size):
 | 
						|
    from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
 | 
						|
    from transformers import AutoTokenizer, LlamaTokenizer
 | 
						|
 | 
						|
    os.environ["BIGDL_OPT_IPEX"] = "true"
 | 
						|
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
    # Load model in bf16,
 | 
						|
    # which convert the relevant layers in the model into BF16 format
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
 | 
						|
                                          use_cache=True)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
 | 
						|
                                                     use_cache=True)
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
 | 
						|
                                                     use_cache=True)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    if not hasattr(model.config, "token_latency"):
 | 
						|
        model.config.token_latency = True
 | 
						|
    end = time.perf_counter()
 | 
						|
    load_time = end - st
 | 
						|
    print(">> loading of model costs {}s".format(load_time))
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode(), torch.autocast("cpu"):
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            in_out_len = in_out.split("-")
 | 
						|
            in_len = int(in_out_len[0])
 | 
						|
            out_len = int(in_out_len[1])
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # in_len.txt maybe shorter than we need,
 | 
						|
            # use much longer context to make sure input length
 | 
						|
            test_length = min(in_len*2, 8192)
 | 
						|
            while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
						|
                test_length = test_length * 2
 | 
						|
            input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # slice the input_ids to ensure the prompt length is required length.
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            input_ids = input_ids[:, :in_len]
 | 
						|
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
            input_list = [true_str] * batch_size
 | 
						|
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids
 | 
						|
            actual_in_len = input_ids.shape[1]
 | 
						|
            result[in_out] = []
 | 
						|
            for i in range(num_trials + warm_up):
 | 
						|
                st = time.perf_counter()
 | 
						|
                output_ids, total_list = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                            num_beams=num_beams)
 | 
						|
                end = time.perf_counter()
 | 
						|
                print("model generate cost: " + str(end - st))
 | 
						|
                output = tokenizer.batch_decode(output_ids)
 | 
						|
                print(output[0])
 | 
						|
                actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                if i >= warm_up:
 | 
						|
                    result[in_out].append([total_list[0], np.mean(total_list[1:]), 0,
 | 
						|
                                          actual_in_len, actual_out_len, load_time])
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def run_bigdl_ipex_int4(repo_id,
 | 
						|
                    local_model_hub,
 | 
						|
                    in_out_pairs,
 | 
						|
                    warm_up,
 | 
						|
                    num_trials,
 | 
						|
                    num_beams,
 | 
						|
                    batch_size):
 | 
						|
    from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
 | 
						|
    from transformers import AutoTokenizer, LlamaTokenizer
 | 
						|
 | 
						|
    os.environ["BIGDL_OPT_IPEX"] = "true"
 | 
						|
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.from_pretrained(model_path, load_in_low_bit='sym_int4', trust_remote_code=True, torch_dtype='auto',
 | 
						|
                                          use_cache=True)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='sym_int4', trust_remote_code=True, torch_dtype='auto',
 | 
						|
                                                     use_cache=True)
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='sym_int4', trust_remote_code=True, torch_dtype='auto',
 | 
						|
                                                     use_cache=True)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    if not hasattr(model.config, "token_latency"):
 | 
						|
        model.config.token_latency = True
 | 
						|
    end = time.perf_counter()
 | 
						|
    load_time = end - st
 | 
						|
    print(">> loading of model costs {}s".format(load_time))
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode(), torch.autocast("cpu"):
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            in_out_len = in_out.split("-")
 | 
						|
            in_len = int(in_out_len[0])
 | 
						|
            out_len = int(in_out_len[1])
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # in_len.txt maybe shorter than we need,
 | 
						|
            # use much longer context to make sure input length
 | 
						|
            test_length = min(in_len*2, 8192)
 | 
						|
            while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
						|
                test_length = test_length * 2
 | 
						|
            input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # slice the input_ids to ensure the prompt length is required length.
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            input_ids = input_ids[:, :in_len]
 | 
						|
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
            input_list = [true_str] * batch_size
 | 
						|
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids
 | 
						|
            actual_in_len = input_ids.shape[1]
 | 
						|
            result[in_out] = []
 | 
						|
            for i in range(num_trials + warm_up):
 | 
						|
                st = time.perf_counter()
 | 
						|
                output_ids, total_list = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                            num_beams=num_beams)
 | 
						|
                end = time.perf_counter()
 | 
						|
                print("model generate cost: " + str(end - st))
 | 
						|
                output = tokenizer.batch_decode(output_ids)
 | 
						|
                print(output[0])
 | 
						|
                actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                if i >= warm_up:
 | 
						|
                    result[in_out].append([total_list[0], np.mean(total_list[1:]), 0,
 | 
						|
                                          actual_in_len, actual_out_len, load_time])
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def run_bigdl_ipex_int8(repo_id,
 | 
						|
                    local_model_hub,
 | 
						|
                    in_out_pairs,
 | 
						|
                    warm_up,
 | 
						|
                    num_trials,
 | 
						|
                    num_beams,
 | 
						|
                    batch_size):
 | 
						|
    from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
 | 
						|
    from transformers import AutoTokenizer, LlamaTokenizer
 | 
						|
 | 
						|
    os.environ["BIGDL_OPT_IPEX"] = "true"
 | 
						|
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.from_pretrained(model_path, load_in_low_bit='sym_int8', trust_remote_code=True, torch_dtype='auto',
 | 
						|
                                          use_cache=True)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='sym_int8', trust_remote_code=True, torch_dtype='auto',
 | 
						|
                                                     use_cache=True)
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='sym_int8', trust_remote_code=True, torch_dtype='auto',
 | 
						|
                                                     use_cache=True)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    if not hasattr(model.config, "token_latency"):
 | 
						|
        model.config.token_latency = True
 | 
						|
    end = time.perf_counter()
 | 
						|
    load_time = end - st
 | 
						|
    print(">> loading of model costs {}s".format(load_time))
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode(), torch.autocast("cpu"):
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            in_out_len = in_out.split("-")
 | 
						|
            in_len = int(in_out_len[0])
 | 
						|
            out_len = int(in_out_len[1])
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # in_len.txt maybe shorter than we need,
 | 
						|
            # use much longer context to make sure input length
 | 
						|
            test_length = min(in_len*2, 8192)
 | 
						|
            while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
						|
                test_length = test_length * 2
 | 
						|
            input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # slice the input_ids to ensure the prompt length is required length.
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            input_ids = input_ids[:, :in_len]
 | 
						|
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
            input_list = [true_str] * batch_size
 | 
						|
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids
 | 
						|
            actual_in_len = input_ids.shape[1]
 | 
						|
            result[in_out] = []
 | 
						|
            for i in range(num_trials + warm_up):
 | 
						|
                st = time.perf_counter()
 | 
						|
                output_ids, total_list = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                            num_beams=num_beams)
 | 
						|
                end = time.perf_counter()
 | 
						|
                print("model generate cost: " + str(end - st))
 | 
						|
                output = tokenizer.batch_decode(output_ids)
 | 
						|
                print(output[0])
 | 
						|
                actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                if i >= warm_up:
 | 
						|
                    result[in_out].append([total_list[0], np.mean(total_list[1:]), 0,
 | 
						|
                                          actual_in_len, actual_out_len, load_time])
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def run_deepspeed_optimize_model_gpu(repo_id,
 | 
						|
                                     local_model_hub,
 | 
						|
                                     in_out_pairs,
 | 
						|
                                     warm_up,
 | 
						|
                                     num_trials,
 | 
						|
                                     num_beams,
 | 
						|
                                     low_bit,
 | 
						|
                                     batch_size,
 | 
						|
                                     cpu_embedding):
 | 
						|
    def get_int_from_env(env_keys, default):
 | 
						|
        for e in env_keys:
 | 
						|
            val = int(os.environ.get(e, -1))
 | 
						|
            if val >= 0:
 | 
						|
                return val
 | 
						|
        return int(default)
 | 
						|
    local_rank = get_int_from_env(["LOCAL_RANK","PMI_RANK"], "0")
 | 
						|
    world_size = get_int_from_env(["WORLD_SIZE","PMI_SIZE"], "1")
 | 
						|
    os.environ["RANK"] = str(local_rank)
 | 
						|
    os.environ["WORLD_SIZE"] = str(world_size)
 | 
						|
    os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "29500")
 | 
						|
 | 
						|
    from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
 | 
						|
    from ipex_llm import optimize_model
 | 
						|
    import intel_extension_for_pytorch as ipex
 | 
						|
    import deepspeed
 | 
						|
    from deepspeed.accelerator.cpu_accelerator import CPU_Accelerator
 | 
						|
    from deepspeed.accelerator import set_accelerator, get_accelerator
 | 
						|
    from intel_extension_for_deepspeed import XPU_Accelerator
 | 
						|
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
    print('model_path:', model_path)
 | 
						|
    # First use CPU as accelerator
 | 
						|
    # Convert to deepspeed model and apply bigdl-llm optimization on CPU to decrease GPU memory usage
 | 
						|
    current_accel = CPU_Accelerator()
 | 
						|
    set_accelerator(current_accel)
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.from_pretrained(model_path, device_map={"": "cpu"}, low_cpu_mem_usage=True,
 | 
						|
                                          torch_dtype=torch.float16, trust_remote_code=True, use_cache=True).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, device_map={"": "cpu"}, low_cpu_mem_usage=True,
 | 
						|
                                                     torch_dtype=torch.float16, trust_remote_code=True, use_cache=True).eval()
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, device_map={"": "cpu"}, low_cpu_mem_usage=True,
 | 
						|
                                                     torch_dtype=torch.float16, trust_remote_code=True, use_cache=True).eval()
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    model = deepspeed.init_inference(model, mp_size=world_size,
 | 
						|
                                     dtype=torch.bfloat16, replace_method="auto",)
 | 
						|
    end = time.perf_counter()
 | 
						|
    load_time = end - st
 | 
						|
    print(">> loading of model costs {}s".format(load_time))
 | 
						|
 | 
						|
    # Use bigdl-llm `optimize_model` to convert the model into optimized low bit format
 | 
						|
    # Convert the rest of the model into float16 to reduce allreduce traffic
 | 
						|
    model = optimize_model(model.module.to(f'cpu'), low_bit=low_bit, cpu_embedding=cpu_embedding).to(torch.float16)
 | 
						|
    # Next, use XPU as accelerator to speed up inference
 | 
						|
    current_accel = XPU_Accelerator()
 | 
						|
    set_accelerator(current_accel)
 | 
						|
    # Move model back to xpu
 | 
						|
    model = model.to(f'xpu:{local_rank}')
 | 
						|
 | 
						|
    # Modify backend related settings 
 | 
						|
    if world_size > 1:
 | 
						|
        get_accelerator().set_device(local_rank)
 | 
						|
    dist_backend = get_accelerator().communication_backend_name()
 | 
						|
    import deepspeed.comm.comm
 | 
						|
    deepspeed.comm.comm.cdb = None
 | 
						|
    from deepspeed.comm.comm import init_distributed
 | 
						|
    init_distributed()
 | 
						|
 | 
						|
    model = BenchmarkWrapper(model, do_print=True)
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode():
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            in_out_len = in_out.split("-")
 | 
						|
            in_len = int(in_out_len[0])
 | 
						|
            out_len = int(in_out_len[1])
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # in_len.txt maybe shorter than we need,
 | 
						|
            # use much longer context to make sure input length
 | 
						|
            test_length = min(in_len*2, 8192)
 | 
						|
            while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
						|
                test_length = test_length * 2
 | 
						|
            input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # slice the input_ids to ensure the prompt length is required length.
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            input_ids = input_ids[:, :in_len]
 | 
						|
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
            input_list = [true_str] * batch_size
 | 
						|
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to(f'xpu:{local_rank}')
 | 
						|
            actual_in_len = input_ids.shape[1]
 | 
						|
            result[in_out] = []
 | 
						|
            for i in range(num_trials + warm_up):
 | 
						|
                st = time.perf_counter()
 | 
						|
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                            num_beams=num_beams)
 | 
						|
                torch.xpu.synchronize()
 | 
						|
                end = time.perf_counter()
 | 
						|
                output_ids = output_ids.cpu()
 | 
						|
                print("model generate cost: " + str(end - st))
 | 
						|
                output = tokenizer.batch_decode(output_ids)
 | 
						|
                actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                print(output[0])
 | 
						|
                torch.xpu.empty_cache()
 | 
						|
                if i >= warm_up:
 | 
						|
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
						|
                                               actual_in_len, actual_out_len, load_time, model.peak_memory])
 | 
						|
    del model
 | 
						|
    torch.xpu.empty_cache()
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def run_speculative_cpu(repo_id,
 | 
						|
                    local_model_hub,
 | 
						|
                    in_out_pairs,
 | 
						|
                    warm_up,
 | 
						|
                    num_trials,
 | 
						|
                    num_beams,
 | 
						|
                    batch_size):
 | 
						|
    from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
 | 
						|
    from transformers import AutoTokenizer, LlamaTokenizer
 | 
						|
    from ipex_llm.transformers.convert import get_enable_ipex
 | 
						|
 | 
						|
    _enable_ipex = get_enable_ipex()
 | 
						|
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
 | 
						|
                                          use_cache=True, speculative=True)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
 | 
						|
                                                     use_cache=True, speculative=True)
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
 | 
						|
                                                     use_cache=True, speculative=True)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    if tokenizer.pad_token is None:
 | 
						|
        tokenizer.pad_token = tokenizer.eos_token
 | 
						|
 | 
						|
    end = time.perf_counter()
 | 
						|
    load_time = end - st
 | 
						|
    print(">> loading of model costs {}s".format(load_time))
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode():
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            in_out_len = in_out.split("-")
 | 
						|
            in_len = int(in_out_len[0])
 | 
						|
            out_len = int(in_out_len[1])
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # in_len.txt maybe shorter than we need,
 | 
						|
            # use much longer context to make sure input length
 | 
						|
            test_length = min(in_len*2, 8192)
 | 
						|
            while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
						|
                test_length = test_length * 2
 | 
						|
            input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # slice the input_ids to ensure the prompt length is required length.
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            input_ids = input_ids[:, :in_len]
 | 
						|
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
            input_list = [true_str] * batch_size
 | 
						|
            inputs = tokenizer(input_list, return_tensors="pt")
 | 
						|
            input_ids = inputs.input_ids
 | 
						|
            attention_mask = inputs.attention_mask
 | 
						|
            actual_in_len = input_ids.shape[1]
 | 
						|
            result[in_out] = []
 | 
						|
            for i in range(num_trials + warm_up):
 | 
						|
                st = time.perf_counter()
 | 
						|
                if _enable_ipex:
 | 
						|
                    output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                            num_beams=num_beams, attention_mask=attention_mask)
 | 
						|
                else:
 | 
						|
                    output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                            num_beams=num_beams)
 | 
						|
                end = time.perf_counter()
 | 
						|
                print("model generate cost: " + str(end - st))
 | 
						|
                output = tokenizer.batch_decode(output_ids)
 | 
						|
                print(output[0])
 | 
						|
                actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                if i >= warm_up:
 | 
						|
                    e2e_time = end - st
 | 
						|
                    rest_cost_mean = (e2e_time - model.first_token_time)/(model.n_token_generated - 1)
 | 
						|
                    result[in_out].append([model.first_token_time, rest_cost_mean, 0,
 | 
						|
                                          actual_in_len, actual_out_len, load_time])
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def run_speculative_gpu(repo_id,
 | 
						|
                    local_model_hub,
 | 
						|
                    in_out_pairs,
 | 
						|
                    warm_up,
 | 
						|
                    num_trials,
 | 
						|
                    num_beams,
 | 
						|
                    batch_size):
 | 
						|
    from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
 | 
						|
    from transformers import AutoTokenizer, LlamaTokenizer
 | 
						|
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
 | 
						|
    st = time.perf_counter()
 | 
						|
    if repo_id in CHATGLM_IDS:
 | 
						|
        model = AutoModel.from_pretrained(model_path, load_in_low_bit='fp16', trust_remote_code=True, torch_dtype=torch.float16,
 | 
						|
                                          use_cache=True, speculative=True)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    elif repo_id in LLAMA_IDS:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='fp16', trust_remote_code=True, torch_dtype=torch.float16,
 | 
						|
                                                     use_cache=True, speculative=True)
 | 
						|
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    else:
 | 
						|
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='fp16', trust_remote_code=True, torch_dtype=torch.float16,
 | 
						|
                                                     use_cache=True, speculative=True)
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
        model = model.to('xpu')
 | 
						|
    end = time.perf_counter()
 | 
						|
    load_time = end - st
 | 
						|
    print(">> loading of model costs {}s".format(load_time))
 | 
						|
 | 
						|
    result = {}
 | 
						|
    with torch.inference_mode():
 | 
						|
        for in_out in in_out_pairs:
 | 
						|
            in_out_len = in_out.split("-")
 | 
						|
            in_len = int(in_out_len[0])
 | 
						|
            out_len = int(in_out_len[1])
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # in_len.txt maybe shorter than we need,
 | 
						|
            # use much longer context to make sure input length
 | 
						|
            test_length = min(in_len*2, 8192)
 | 
						|
            while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
						|
                test_length = test_length * 2
 | 
						|
            input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
						|
            # As different tokenizer has different encodings,
 | 
						|
            # slice the input_ids to ensure the prompt length is required length.
 | 
						|
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
						|
            input_ids = input_ids[:, :in_len]
 | 
						|
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
						|
            input_list = [true_str] * batch_size
 | 
						|
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to(model.device)
 | 
						|
            actual_in_len = input_ids.shape[1]
 | 
						|
            result[in_out] = []
 | 
						|
            for i in range(num_trials + warm_up):
 | 
						|
                st = time.perf_counter()
 | 
						|
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
						|
                                            num_beams=num_beams)
 | 
						|
                torch.xpu.synchronize()
 | 
						|
                end = time.perf_counter()
 | 
						|
                output_ids = output_ids.cpu()
 | 
						|
                print("model generate cost: " + str(end - st))
 | 
						|
                output = tokenizer.batch_decode(output_ids)
 | 
						|
                actual_out_len = output_ids.shape[1] - actual_in_len
 | 
						|
                print(output[0])
 | 
						|
                if i >= warm_up:
 | 
						|
                    e2e_time = end - st
 | 
						|
                    rest_cost_mean = (e2e_time - model.first_token_time)/(model.n_token_generated - 1)
 | 
						|
                    result[in_out].append([model.first_token_time, rest_cost_mean, 0,
 | 
						|
                                          actual_in_len, actual_out_len, load_time])
 | 
						|
    del model
 | 
						|
    torch.xpu.empty_cache()
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    from omegaconf import OmegaConf
 | 
						|
    conf = OmegaConf.load(f'{current_dir}/config.yaml')
 | 
						|
    today = date.today()
 | 
						|
    if 'exclude' in conf:
 | 
						|
        excludes = conf['exclude']
 | 
						|
    streaming = False
 | 
						|
    if 'streaming' in conf:
 | 
						|
        streaming = conf['streaming']
 | 
						|
 | 
						|
    
 | 
						|
    import pandas as pd
 | 
						|
    for api in conf.test_api:
 | 
						|
        global csv_name
 | 
						|
        csv_name = f'{current_dir}/{api}-results-{today}.csv'
 | 
						|
        for model in conf.repo_id:
 | 
						|
            in_out_pairs = conf['in_out_pairs'].copy()
 | 
						|
            if excludes:
 | 
						|
                for in_out in conf['in_out_pairs']:
 | 
						|
                    model_id_input = model + ':' + in_out.split('-')[0]
 | 
						|
                    model_id_input_batch_size = model_id_input + ':' + str(conf['batch_size'])
 | 
						|
                    if model_id_input in excludes or model_id_input_batch_size in excludes:
 | 
						|
                        in_out_pairs.remove(in_out)
 | 
						|
            run_model(model, api, in_out_pairs, conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'],
 | 
						|
                      conf['low_bit'], conf['cpu_embedding'], conf['batch_size'], streaming)
 | 
						|
        df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
 | 
						|
                                            'input/output tokens', 'batch_size', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding',
 | 
						|
                                            'model loading time (s)', 'peak mem (GB)', 'streaming'])
 | 
						|
        df.to_csv(csv_name)
 | 
						|
        results = []
 |