158 lines
5.2 KiB
Python
158 lines
5.2 KiB
Python
#
|
|
# Copyright 2016 The BigDL Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# Some parts of this file is adapted from
|
|
# https://github.com/mit-han-lab/streaming-llm/blob/main/streaming_llm/kv_cache.py
|
|
# which is licensed under the MIT license:
|
|
#
|
|
# MIT License
|
|
#
|
|
# Copyright (c) 2023 MIT HAN Lab
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
|
|
|
|
import torch
|
|
|
|
def slice1d(x, start, end):
|
|
return x[:, start:end, ...]
|
|
|
|
def slice2d(x, start, end):
|
|
return x[:, :, start:end, ...]
|
|
|
|
def slice3d(x, start, end):
|
|
return x[:, :, :, start:end, ...]
|
|
|
|
|
|
DIM_TO_SLICE = {
|
|
1: slice1d,
|
|
2: slice2d,
|
|
3: slice3d,
|
|
}
|
|
|
|
|
|
class StartRecentKVCache:
|
|
def __init__(
|
|
self,
|
|
start_size=4,
|
|
recent_size=512,
|
|
k_seq_dim=2,
|
|
v_seq_dim=2,
|
|
):
|
|
print(f"StartRecentKVCache: {start_size}, {recent_size}")
|
|
self.start_size = start_size
|
|
self.recent_size = recent_size
|
|
self.cache_size = start_size + recent_size
|
|
self.k_seq_dim = k_seq_dim
|
|
self.v_seq_dim = v_seq_dim
|
|
self.k_slice = DIM_TO_SLICE[k_seq_dim]
|
|
self.v_slice = DIM_TO_SLICE[v_seq_dim]
|
|
|
|
def __call__(self, past_key_values):
|
|
if past_key_values is None:
|
|
return None
|
|
seq_len = past_key_values[0][0].size(self.k_seq_dim)
|
|
if seq_len <= self.cache_size:
|
|
return past_key_values
|
|
return [
|
|
[
|
|
torch.cat(
|
|
[
|
|
self.k_slice(k, 0, self.start_size),
|
|
self.k_slice(k, seq_len - self.recent_size, seq_len),
|
|
],
|
|
dim=self.k_seq_dim,
|
|
),
|
|
torch.cat(
|
|
[
|
|
self.v_slice(v, 0, self.start_size),
|
|
self.v_slice(v, seq_len - self.recent_size, seq_len),
|
|
],
|
|
dim=self.v_seq_dim,
|
|
),
|
|
]
|
|
for k, v in past_key_values
|
|
]
|
|
|
|
def evict_for_space(self, past_key_values, num_coming):
|
|
if past_key_values is None:
|
|
return None
|
|
seq_len = past_key_values[0][0].size(self.k_seq_dim)
|
|
if seq_len + num_coming <= self.cache_size:
|
|
return past_key_values
|
|
return [
|
|
[
|
|
torch.cat(
|
|
[
|
|
self.k_slice(k, 0, self.start_size),
|
|
self.k_slice(
|
|
k, seq_len - self.recent_size + num_coming, seq_len
|
|
),
|
|
],
|
|
dim=self.k_seq_dim,
|
|
),
|
|
torch.cat(
|
|
[
|
|
self.v_slice(v, 0, self.start_size),
|
|
self.v_slice(
|
|
v, seq_len - self.recent_size + num_coming, seq_len
|
|
),
|
|
],
|
|
dim=self.v_seq_dim,
|
|
),
|
|
]
|
|
for k, v in past_key_values
|
|
]
|
|
|
|
def evict_range(self, past_key_values, start, end):
|
|
if past_key_values is None:
|
|
return None
|
|
seq_len = past_key_values[0][0].size(self.k_seq_dim)
|
|
assert start <= end and end <= seq_len
|
|
return [
|
|
[
|
|
torch.cat(
|
|
[
|
|
self.k_slice(k, 0, start),
|
|
self.k_slice(k, end, seq_len),
|
|
],
|
|
dim=self.k_seq_dim,
|
|
),
|
|
torch.cat(
|
|
[
|
|
self.v_slice(v, 0, start),
|
|
self.v_slice(v, end, seq_len),
|
|
],
|
|
dim=self.v_seq_dim,
|
|
),
|
|
]
|
|
for k, v in past_key_values
|
|
]
|