* dq divide * fix * support attn divide * update qwen2 7b * divide down_proj & other linear * use concat & reduce sum * support scale after * support qwen2 * w/ mm * update reshape * spda * split * split 2+ * update * lm head-> 28 * no scale * update * update * update * fix style * fix style * to split linear * update * update code * address comments * fix style & remove redundant code & revert benchmark scripts * fix style & remove code * update save & load --------- Co-authored-by: Yang Wang <yang3.wang@intel.com>
		
			
				
	
	
		
			88 lines
		
	
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			88 lines
		
	
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# Copyright 2016 The BigDL Authors.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
# this code is to support converting of model in load bit
 | 
						|
# for performance tests using load_low_bit
 | 
						|
 | 
						|
import time
 | 
						|
import torch
 | 
						|
import os
 | 
						|
import argparse
 | 
						|
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
						|
from transformers import AutoTokenizer
 | 
						|
from run import get_model_path
 | 
						|
 | 
						|
current_dir = os.path.dirname(os.path.realpath(__file__))
 | 
						|
 | 
						|
def save_npu_model_in_low_bit(repo_id,
 | 
						|
                          local_model_hub,
 | 
						|
                          low_bit,
 | 
						|
                          max_output_len, max_prompt_len, intra_pp, inter_pp,
 | 
						|
                          disable_transpose_value_cache,
 | 
						|
                          quantization_group_size):
 | 
						|
    model_path = get_model_path(repo_id, local_model_hub)
 | 
						|
    # Load model in 4 bit,
 | 
						|
    # which convert the relevant layers in the model into INT4 format
 | 
						|
    st = time.perf_counter()
 | 
						|
    model = AutoModelForCausalLM.from_pretrained(
 | 
						|
            model_path,
 | 
						|
            torch_dtype=torch.float16,
 | 
						|
            trust_remote_code=True,
 | 
						|
            attn_implementation="eager",
 | 
						|
            load_in_low_bit="sym_int4",
 | 
						|
            optimize_model=True,
 | 
						|
            max_output_len=max_output_len,
 | 
						|
            max_prompt_len=max_prompt_len,
 | 
						|
            intra_pp=intra_pp,
 | 
						|
            inter_pp=inter_pp,
 | 
						|
            transpose_value_cache=not disable_transpose_value_cache,
 | 
						|
            quantization_group_size=quantization_group_size
 | 
						|
        )
 | 
						|
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
						|
    end = time.perf_counter()
 | 
						|
    print(">> loading of and converting of model costs {}s".format(end - st))
 | 
						|
 | 
						|
    model.save_low_bit(model_path+'-npu-'+low_bit)
 | 
						|
    tokenizer.save_pretrained(model_path+'-npu-'+low_bit)
 | 
						|
    print(f"Model saved to {model_path+'-npu-'+low_bit}")
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    parser = argparse.ArgumentParser(
 | 
						|
        description="Predict Tokens using `generate()` API for npu model"
 | 
						|
    )
 | 
						|
    parser.add_argument("--max-output-len", type=int, default=1024)
 | 
						|
    parser.add_argument("--max-prompt-len", type=int, default=512)
 | 
						|
    parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
 | 
						|
    parser.add_argument("--intra-pp", type=int, default=2)
 | 
						|
    parser.add_argument("--inter-pp", type=int, default=2)
 | 
						|
    parser.add_argument("--quantization_group_size", type=int, default=0)
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
    from omegaconf import OmegaConf
 | 
						|
    conf = OmegaConf.load(f'{current_dir}/config.yaml')
 | 
						|
 | 
						|
    for model in conf.repo_id:
 | 
						|
        save_npu_model_in_low_bit(repo_id=model,
 | 
						|
                              local_model_hub=conf['local_model_hub'],
 | 
						|
                              low_bit=conf['low_bit'],
 | 
						|
                              max_output_len=args.max_output_len,
 | 
						|
                              max_prompt_len=args.max_prompt_len,
 | 
						|
                              intra_pp=args.intra_pp,
 | 
						|
                              inter_pp=args.inter_pp,
 | 
						|
                              disable_transpose_value_cache=args.disable_transpose_value_cache,
 | 
						|
                              quantization_group_size=args.quantization_group_size,
 | 
						|
                              )
 |